Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays

Abstract

AMPylation (adenylylation) has been recognized as an important post-translational modification that is used by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes, and it is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method for identifying new substrates using protein microarrays, which can markedly expand the list of potential substrates. Here we describe procedures for detecting AMPylated and auto-AMPylated proteins in a sensitive, high-throughput and nonradioactive manner. The approach uses high-density protein microarrays fabricated using nucleic acid programmable protein array (NAPPA) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide-alkyne cycloaddition (CuAAC). The assay can be accomplished within 11 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of Fic/DOC protein family sequences across a variety of 3,000+ species.
Figure 2: Outline of the NAPPA protocol for the detection of AMPylation substrates.
Figure 3: Quality control of self-assembled human protein NAPPA microarrays.
Figure 4: Representative results from the AMPylation screening with self-assembled human NAPPA microarrays.
Figure 5: The main steps to prepare for the in vitro transcription and translation of plasmid DNAs that are printed on NAPPA arrays.

Similar content being viewed by others

References

  1. Stadtman, E.R. et al. Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylation and deadenylylation reactions. Adv. Enzyme Regul. 8, 99–118 (1970).

    Article  CAS  Google Scholar 

  2. Itzen, A., Blankenfeldt, W. & Goody, R.S. Adenylylation: renaissance of a forgotten post-translational modification. Trends Biochem. Sci. 36, 221–228 (2011).

    Article  CAS  Google Scholar 

  3. Yarbrough, M.L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269–272 (2009).

    Article  CAS  Google Scholar 

  4. Worby, C.A. et al. The fic domain: regulation of cell signaling by adenylylation. Mol. Cell 34, 93–103 (2009).

    Article  CAS  Google Scholar 

  5. Tan, Y. & Luo, Z.Q. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475, 506–509 (2011).

    Article  CAS  Google Scholar 

  6. Neunuebel, M.R. et al. De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333, 453–456 (2011).

    Article  CAS  Google Scholar 

  7. Muller, M.P. et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329, 946–949 (2010).

    Article  Google Scholar 

  8. Kinch, L.N., Yarbrough, M.L., Orth, K. & Grishin, N.V. Fido, a novel AMPylation domain common to Fic, Doc, and AvrB. PLoS ONE 4, e5818 (2009).

    Article  Google Scholar 

  9. Finn, R.D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    Article  CAS  Google Scholar 

  10. Yu, X. et al. Copper-catalyzed azide-alkyne cycloaddition (click chemistry)-based detection of global pathogen-host AMPylation on self-assembled human protein microarrays. Mol. Cell. Proteomics 13, 3164–3176 (2014).

    Article  CAS  Google Scholar 

  11. Woolery, A.R., Yu, X., LaBaer, J. & Orth, K. AMPylation of Rho GTPases subverts multiple host signaling processes. J. Biol. Chem. 289, 32977–32988 (2014).

    Article  CAS  Google Scholar 

  12. Rahman, M. et al. Visual neurotransmission in Drosophila requires expression of Fic in glial capitate projections. Nat. Neurosci. 15, 871–875 (2012).

    Article  CAS  Google Scholar 

  13. Ham, H. et al. Unfolded protein response-regulated dFic reversibly AMPylates BiP during endoplasmic reticulum homeostasis. J. Biol. Chem. 289, 36059–36069 (2014).

    Article  CAS  Google Scholar 

  14. Pieles, K., Glatter, T., Harms, A., Schmidt, A. & Dehio, C. An experimental strategy for the identification of AMPylation targets from complex protein samples. Proteomics 14, 1048–1052 (2014).

    Article  CAS  Google Scholar 

  15. Lewallen, D.M. et al. Inhibiting AMPylation: a novel screen to identify the first small molecule inhibitors of protein AMPylation. ACS Chem. Biol. 9, 433–442 (2014).

    Article  CAS  Google Scholar 

  16. Lewallen, D.M., Steckler, C.J., Knuckley, B., Chalmers, M.J. & Thompson, P.R. Probing adenylation: using a fluorescently labelled ATP probe to directly label and immunoprecipitate VopS substrates. Mol. Biosyst. 8, 1701–1706 (2012).

    Article  CAS  Google Scholar 

  17. Li, Y., Al-Eryani, R., Yarbrough, M.L., Orth, K. & Ball, H.L. Characterization of AMPylation on threonine, serine, and tyrosine using mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 752–761 (2011).

    Article  CAS  Google Scholar 

  18. Hao, Y.H. et al. Characterization of a rabbit polyclonal antibody against threonine-AMPylation. J. Biotechnol. 151, 251–254 (2011).

    Article  CAS  Google Scholar 

  19. Grammel, M., Luong, P., Orth, K. & Hang, H.C. A chemical reporter for protein AMPylation. J. Am. Chem. Soc. 133, 17103–17105 (2011).

    Article  CAS  Google Scholar 

  20. Ramachandran, N. et al. Self-assembling protein microarrays. Science 305, 86–90 (2004).

    Article  CAS  Google Scholar 

  21. Ramachandran, N. et al. Next-generation high-density self-assembling functional protein arrays. Nat. Methods 5, 535–538 (2008).

    Article  CAS  Google Scholar 

  22. Miersch, S. et al. Serological autoantibody profiling of type 1 diabetes by protein arrays. J. Proteomics 94, 486–496 (2013).

    Article  CAS  Google Scholar 

  23. Prados-Rosales, R. et al. Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. mBio 5, e01921 (2014).

    Article  CAS  Google Scholar 

  24. Grammel, M. & Hang, H.C. Chemical reporters for biological discovery. Nat. Chem. Biol. 9, 475–484 (2013).

    Article  CAS  Google Scholar 

  25. Westcott, N.P. & Hang, H.C. Chemical reporters for exploring ADP-ribosylation and AMPylation at the host-pathogen interface. Curr. Opin. Chem. Biol. 23C, 56–62 (2014).

    Article  Google Scholar 

  26. Engel, P. et al. Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature 482, 107–110 (2012).

    Article  CAS  Google Scholar 

  27. Bunney, T.D. et al. Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions. Structure 22, 1831–1843 (2014).

    Article  CAS  Google Scholar 

  28. Yu, X. et al. Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions. Theranostics 4, 808–822 (2014).

    Article  CAS  Google Scholar 

  29. Lin, Y.Y. et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136, 1073–1084 (2009).

    Article  CAS  Google Scholar 

  30. Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005).

    Article  CAS  Google Scholar 

  31. Wu, X. et al. Activation of diverse signalling pathways by oncogenic PIK3CA mutations. Nat. Commun. 5, 4961 (2014).

    Article  CAS  Google Scholar 

  32. Yu, X., Schneiderhan-Marra, N. & Joos, T.O. Protein microarrays for personalized medicine. Clin. Chem. 56, 376–387 (2010).

    Article  CAS  Google Scholar 

  33. Yu, X. et al. Quantifying antibody binding on protein microarrays using microarray nonlinear calibration. Biotechniques 54, 257–264 (2013).

    Article  CAS  Google Scholar 

  34. Festa, F. et al. Robust microarray production of freshly expressed proteins in a human milieu. Proteomics Clin. Appl. 7, 372–377 (2013).

    Article  CAS  Google Scholar 

  35. Qiu, J. & LaBaer, J. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform. Methods Enzymol. 500, 151–163 (2011).

    Article  CAS  Google Scholar 

  36. Miersch, S. & LaBaer, J. Nucleic acid programmable protein arrays: versatile tools for array-based functional protein studies. Curr. Protoc. Protein Sci. 64, 27.2.1–27.2.26 (2011).

    Article  Google Scholar 

  37. Sibani, S. & LaBaer, J. Immunoprofiling using NAPPA protein microarrays. Methods Mol. Biol. 723, 149–161 (2011).

    Article  CAS  Google Scholar 

  38. Seiler, C.Y. et al. DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research. Nucleic Acids Res. 42, D1253–D1260 (2014).

    Article  CAS  Google Scholar 

  39. Garcia-Pino, A., Zenkin, N. & Loris, R. The many faces of Fic: structural and functional aspects of Fic enzymes. Trends Biochem. Sci. 39, 121–129 (2014).

    Article  CAS  Google Scholar 

  40. Festa, F., Mendoza, A., Vatten, K. & Labaer, J. Study of the kinase activity using NAPPA protein microarray expressed with human IVTT system. Cancer Res. 72, LB-414 (2012).

    Google Scholar 

  41. Neunuebel, M.R., Mohammadi, S., Jarnik, M. & Machner, M.P. Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J. Bacteriol. 194, 1389–1400 (2012).

    Article  CAS  Google Scholar 

  42. Kovacic, S. et al. Construction and characterization of kilobasepair densely labeled peptide-DNA. Biomacromolecules 15, 4065–4072 (2014).

    Article  CAS  Google Scholar 

  43. Kim, S.Y., Kim, I.G., Chung, S.I. & Steinert, P.M. The structure of the transglutaminase 1 enzyme. Deletion cloning reveals domains that regulate its specific activity and substrate specificity. J. Biol. Chem. 269, 27979–27986 (1994).

    CAS  PubMed  Google Scholar 

  44. Saul, J. et al. Development of a full-length human protein production pipeline. Protein Sci. 23, 1123–1135 (2014).

    Article  CAS  Google Scholar 

  45. Carlson, E.D., Gan, R., Hodgman, C.E. & Jewett, M.C. Cell-free protein synthesis: applications come of age. Biotechnol. Adv. 30, 1185–1194 (2012).

    Article  CAS  Google Scholar 

  46. Joshi, P. et al. The functional interactome landscape of the human histone deacetylase family. Mol. Syst. Biol. 9, 672 (2013).

    Article  Google Scholar 

  47. Spurrier, B., Ramalingam, S. & Nishizuka, S. Reverse-phase protein lysate microarrays for cell signaling analysis. Nat. Protoc. 3, 1796–1808 (2008).

    Article  Google Scholar 

  48. Anderson, K.S. et al. Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J. Proteome Res. 10, 85–96 (2011).

    Article  CAS  Google Scholar 

  49. Cruz, J.W. et al. Doc toxin is a kinase that inactivates elongation factor Tu. J. Biol. Chem. 289, 7788–7798 (2014).

    Article  CAS  Google Scholar 

  50. Feng, F. et al. A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485, 114–118 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Early Detection Research Network (5U01CA117374). We thank K. Orth's laboratory (Department of Molecular Biology, University of Texas Southwestern Medical Center) and H. Hang's laboratory (The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University) for providing the purified AMPylator proteins and click reagents, respectively. We thank B. Petritis and K. Barker for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. designed and performed the experiments, and wrote the manuscript; J.L. designed the study and wrote the manuscript.

Corresponding author

Correspondence to Joshua LaBaer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., LaBaer, J. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays. Nat Protoc 10, 756–767 (2015). https://doi.org/10.1038/nprot.2015.044

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.044

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing