Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Focal embolic cerebral ischemia in the rat

Abstract

Animal models of focal cerebral ischemia are well accepted for investigating the pathogenesis and potential treatment strategies for human stroke. Occlusion of the middle cerebral artery (MCA) with an endovascular filament is a widely used model to induce focal cerebral ischemia. However, this model is not amenable to thrombolytic therapies. As thrombolysis with recombinant tissue plasminogen activator (rtPA) is a standard of care within 4.5 h of human stroke onset, suitable animal models that mimic cellular and molecular mechanisms of thrombosis and thrombolysis of stroke are required. By occluding the MCA with a fibrin-rich allogeneic clot, we previously developed an embolic model of MCA occlusion in the rat, which recapitulates the key components of thrombotic development and of thrombolytic therapy of rtPA observed from human ischemic stroke. Here we describe in detail the surgical procedures of our model, including preparing emboli from rat donors. These procedures can be typically completed within 30 min, and they are highly adaptable to other strains of rats, as well as mice, in both sexes. Thus, this model provides a powerful tool for translational stroke research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation of clot and measurement of catheter.
Figure 2: MCAO and ischemic lesion.
Figure 3: Angiogram, CBF and thrombosis.
Figure 4: Neurological outcome.

Similar content being viewed by others

References

  1. Hacke, W. et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 359, 1317–1329 (2008).

    Article  CAS  Google Scholar 

  2. Adeoye, O., Hornung, R., Khatri, P. & Kleindorfer, D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke 42, 1952–1955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kleindorfer, D., Lindsell, C.J., Brass, L., Koroshetz, W. & Broderick, J.P. National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke 39, 924–928 (2008).

    Article  PubMed  Google Scholar 

  4. Fonarow, G.C. et al. Timeliness of tissue-type plasminogen activator therapy in acute ischemic stroke: patient characteristics, hospital factors, and outcomes associated with door-to-needle times within 60 minutes. Circulation 123, 750–758 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Bogousslavsky, J., Van Melle, G. & Regli, F. The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke. Stroke 19, 1083–1092 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Dalal, P.M., Shah, P.M., Sheth, S.C. & Deshpande, C.K. Cerebral embolism. Angiographic observations on spontaneous clot lysis. Lancet 1, 61–64 (1965).

    Article  CAS  PubMed  Google Scholar 

  7. Longa, E.Z., Weinstein, P.R., Carlson, S. & Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Schmid-Elsaesser, R., Zausinger, S., Hungerhuber, E., Baethmann, A. & Reulen, H.J. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29, 2162–2170 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Ginsberg, M.D. Current status of neuroprotection for cerebral ischemia: synoptic overview. Stroke 40, S111–114 (2009).

    Article  PubMed  Google Scholar 

  10. Feuerstein, G.Z. et al. Missing steps in the STAIR case: a translational medicine perspective on the development of NXY-059 for treatment of acute ischemic stroke. J. Cereb. Blood Flow Metab. 28, 217–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. O'Collins, V.E. et al. 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Lo, E.H. A new penumbra: transitioning from injury into repair after stroke. Nat. Med. 14, 497–500 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Lo, E.H. Experimental models, neurovascular mechanisms and translational issues in stroke research. Br. J. Pharmacol. 153 (suppl. 1): S396–S405 (2008).

    CAS  PubMed  Google Scholar 

  14. Zhang, R.L., Chopp, M., Zhang, Z.G., Jiang, Q. & Ewing, J.R. A rat model of focal embolic cerebral ischemia. Brain Res. 766, 83–92 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Z.G. et al. Cerebral microvascular obstruction by fibrin is associated with upregulation of PAI-1 acutely after onset of focal embolic ischemia in rats. J. Neurosci. 19, 10898–10907 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Z.G. et al. Dynamic platelet accumulation at the site of the occluded middle cerebral artery and in downstream microvessels is associated with loss of microvascular integrity after embolic middle cerebral artery occlusion. Brain Res. 912, 181–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Ding, G. et al. MRI of combination treatment of embolic stroke in rat with rtPA and atorvastatin. J. Neurol. Sci. 246, 139–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, R.L., Zhang, Z.G., Chopp, M. & Zivin, J.A. Thrombolysis with tissue plasminogen activator alters adhesion molecule expression in the ischemic rat brain. Stroke 30, 624–629 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, L. et al. Effects of a selective CD11b/CD18 antagonist and recombinant human tissue plasminogen activator treatment alone and in combination in a rat embolic model of stroke. Stroke 34, 1790–1795 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, R.L., Chopp, M., Zhang, Z.G. & Divine, G. Early (1 h) administration of tissue plasminogen activator reduces infarct volume without increasing hemorrhagic transformation after focal cerebral embolization in rats. J. Neurol. Sci. 160, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Marder, V.J. et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke 37, 2086–2093 (2006).

    Article  PubMed  Google Scholar 

  22. Singh, P., Doostkam, S., Reinhard, M., Ivanovas, V. & Taschner, C.A. Immunohistochemical analysis of thrombi retrieved during treatment of acute ischemic stroke: does stent-retriever cause intimal damage? Stroke 44, 1720–1722 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, T. et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat. Med. 12, 1278–1285 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, L. et al. Functional recovery in aged and young rats after embolic stroke: treatment with a phosphodiesterase type 5 inhibitor. Stroke 36, 847–852 (2005).

    Article  PubMed  Google Scholar 

  25. Zhang, L. et al. Adjuvant treatment with a glycoprotein IIb/IIIa receptor inhibitor increases the therapeutic window for low-dose tissue plasminogen activator administration in a rat model of embolic stroke. Circulation 107, 2837–2843 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Z. et al. Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 106, 740–745 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Wilhelm-Schwenkmezger, T. et al. Therapeutic application of 20-kHz transcranial ultrasound in an embolic middle cerebral artery occlusion model in rats: safety concerns. Stroke 38, 1031–1035 (2007).

    Article  PubMed  Google Scholar 

  28. Hobohm, C. et al. Long-lasting neuronal loss following experimental focal cerebral ischemia is not affected by combined administration of tissue plasminogen activator and hyperbaric oxygen. Brain Res. 1417, 115–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Guluma, K.Z. & Lapchak, P.A. Comparison of the post-embolization effects of tissue-plasminogen activator and simvastatin on neurological outcome in a clinically relevant rat model of acute ischemic stroke. Brain Res. 1354, 206–216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tanaka, Y., Marumo, T., Omura, T. & Yoshida, S. Serum S100B indicates successful combination treatment with recombinant tissue plasminogen activator and MK-801 in a rat model of embolic stroke. Brain Res. 1154, 194–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Z.G. et al. A model of mini-embolic stroke offers measurements of the neurovascular unit response in the living mouse. Stroke 36, 2701–2704 (2005).

    Article  PubMed  Google Scholar 

  32. Undas, A. & Ariens, R.A. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol. 31, e88–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Wohner, N. et al. Lytic resistance of fibrin containing red blood cells. Arterioscler. Thromb. Vasc. Biol. 31, 2306–2313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Z., Chopp, M., Zhang, R.L. & Goussev, A. A mouse model of embolic focal cerebral ischemia. J. Cereb. Blood Flow Metab. 17, 1081–1088 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Del Sette, M., Angeli, S., Stara, I., Finocchi, C. & Gandolfo, C. Microembolic signals with serial transcranial Doppler monitoring in acute focal ischemic deficit. A local phenomenon? Stroke 28, 1311–1313 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Idicula, T.T., Naess, H. & Thomassen, L. Microemboli-monitoring during the acute phase of ischemic stroke: is it worth the time? BMC Neurol. 10, 79 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koennecke, H.C. et al. Frequency and determinants of microembolic signals on transcranial Doppler in unselected patients with acute carotid territory ischemia. A prospective study. Cerebrovasc. Dis. 8, 107–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Poppert, H., Sadikovic, S., Sander, K., Wolf, O. & Sander, D. Embolic signals in unselected stroke patients: prevalence and diagnostic benefit. Stroke 37, 2039–2043 (2006).

    Article  PubMed  Google Scholar 

  39. Chen, J. et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32, 2682–2688 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Hernandez, T.D. & Schallert, T. Seizures and recovery from experimental brain damage. Exp. Neurol. 102, 318–324 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Bouet, V. et al. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat. Protoc. 4, 1560–1564 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Schallert, T. et al. Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol. Biochem. Behav. 16, 455–462 (1982).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, L. et al. Tadalafil, a long-acting type 5 phosphodiesterase isoenzyme inhibitor, improves neurological functional recovery in a rat model of embolic stroke. Brain Res. 1118, 192–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, Q. et al. Magnetic resonance imaging indexes of therapeutic efficacy of recombinant tissue plasminogen activator treatment of rat at 1 and 4 hours after embolic stroke. J. Cereb. Blood Flow Metab. 20, 21–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, Q. et al. Diffusion-, T2-, and perfusion-weighted nuclear magnetic resonance imaging of middle cerebral artery embolic stroke and recombinant tissue plasminogen activator intervention in the rat. J. Cereb. Blood Flow Metab. 18, 758–767 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, L. et al. Combination treatment with N-acetyl-seryl-aspartyl-lysyl-proline and tissue plasminogen activator provides potent neuroprotection in rats after stroke. Stroke 45, 1108–1114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding, G. et al. MRI evaluation of BBB disruption after adjuvant AcSDKP treatment of stroke with tPA in rat. Neuroscience 271, 1–8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, L., Zhang, Z.G. & Chopp, M. The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol. Sci. 33, 415–422 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, L. et al. Combination treatment with VELCADE and low-dose tissue plasminogen activator provides potent neuroprotection in aged rats after embolic focal ischemia. Stroke 41, 1001–1007 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jia, L., Chopp, M., Zhang, L., Lu, M. & Zhang, Z. Erythropoietin in combination of tissue plasminogen activator exacerbates brain hemorrhage when treatment is initiated 6 hours after stroke. Stroke 41, 2071–2076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, L. et al. Treatment of embolic stroke in rats with bortezomib and recombinant human tissue plasminogen activator. Thromb. Haemost. 95, 166–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, L. et al. Multitargeted effects of statin-enhanced thrombolytic therapy for stroke with recombinant human tissue-type plasminogen activator in the rat. Circulation 112, 3486–3494 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Ding, G. et al. Analysis of combined treatment of embolic stroke in rat with r-tPA and a GPIIb/IIIa inhibitor. J. Cereb. Blood Flow Metab. 25, 87–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, L., Zhang, Z.G., Zhang, C., Zhang, R.L. & Chopp, M. Intravenous administration of a GPIIb/IIIa receptor antagonist extends the therapeutic window of intra-arterial tenecteplase-tissue plasminogen activator in a rat stroke model. Stroke 35, 2890–2895 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, Q. et al. MRI evaluation of treatment of embolic stroke in rat with intra-arterial and intravenous rt-PA. J. Neurol. Sci. 224, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Ding, G. et al. Multiparametric ISODATA analysis of embolic stroke and rt-PA intervention in rat. J. Neurol. Sci. 223, 135–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Morris, D.C. et al. Extension of the therapeutic window for recombinant tissue plasminogen activator with argatroban in a rat model of embolic stroke. Stroke 32, 2635–2640 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, R.L. et al. Postischemic intracarotid treatment with TNK-tPA reduces infarct volume and improves neurological deficits in embolic stroke in the unanesthetized rat. Brain Res. 878, 64–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Nakayama, H., Dietrich, W.D., Watson, B.D., Busto, R. & Ginsberg, M.D. Photothrombotic occlusion of rat middle cerebral artery: histopathological and hemodynamic sequelae of acute recanalization. J. Cereb. Blood Flow Metab. 8, 357–366 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Watson, B.D., Dietrich, W.D., Busto, R., Wachtel, M.S. & Ginsberg, M.D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann. Neurol. 17, 497–504 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. Zivin, J.A. et al. A model for quantitative evaluation of embolic stroke therapy. Brain Res. 435, 305–309 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Gerriets, T. et al. The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J. Neurosci. Methods 122, 201–211 (2003).

    Article  PubMed  Google Scholar 

  63. Kudo, M., Aoyama, A., Ichimori, S. & Fukunaga, N. An animal model of cerebral infarction. Homologous blood clot emboli in rats. Stroke 13, 505–508 (1982).

    Article  CAS  PubMed  Google Scholar 

  64. Overgaard, K. et al. A rat model of reproducible cerebral infarction using thrombotic blood clot emboli. J. Cereb. Blood Flow Metab. 12, 484–490 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Benes, V., Zabramski, J.M., Boston, M., Puca, A. & Spetzler, R.F. Effect of intra-arterial tissue plasminogen activator and urokinase on autologous arterial emboli in the cerebral circulation of rabbits [corrected]. Stroke 21, 1594–1599 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by US National Institutes of Health grants R01NS079612 (Z.G.Z.) and R01AG037506 (M.C.).

Author information

Authors and Affiliations

Authors

Contributions

R.L.Z., Z.G.Z. and M.C. conceptualized experiments. R.L.Z., L.Z. and Z.G.Z. performed the surgeries and histological analysis. Q.J. and G.D. performed MRI experiments and analyzed MRI data. L.Z., Z.G.Z. and M.C. wrote the manuscripts.

Corresponding author

Correspondence to Zheng Gang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, R., Jiang, Q. et al. Focal embolic cerebral ischemia in the rat. Nat Protoc 10, 539–547 (2015). https://doi.org/10.1038/nprot.2015.036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.036

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing