Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells

Abstract

Targeted nucleases, including zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9), have provided researchers with the ability to manipulate nearly any genomic sequence in human cells and model organisms. However, realizing the full potential of these genome-modifying technologies requires their safe and efficient delivery into relevant cell types. Unlike methods that rely on expression from nucleic acids, the direct delivery of nuclease proteins to cells provides rapid action and fast turnover, leading to fewer off-target effects while maintaining high rates of targeted modification. These features make nuclease protein delivery particularly well suited for precision genome engineering. Here we describe procedures for implementing protein-based genome editing in human embryonic stem cells and primary cells. Protocols for the expression, purification and delivery of ZFN proteins, which are intrinsically cell-permeable; TALEN proteins, which can be internalized via conjugation with cell-penetrating peptide moieties; and Cas9 ribonucleoprotein, whose nucleofection into cells facilitates rapid induction of multiplexed modifications, are described, along with procedures for evaluating nuclease protein activity. Once they are constructed, nuclease proteins can be expressed and purified within 6 d, and they can be used to induce genomic modifications in human cells within 2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modes of nuclease protein delivery.
Figure 2: Modification of the AAVS1 locus by direct delivery of zinc-finger nuclease (ZFN) proteins.
Figure 3: Modification of the human CCR5 gene by cell-penetrating TALEN proteins.
Figure 4: Modification of multiple genomic loci by direct delivery of Cas9 RNP.
Figure 5: Modification of the AAVS1 locus by direct delivery of RNP with donor plasmid or ssODN.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gaj, T., Gersbach, C.A. & Barbas, C.F. III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carroll, D. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83, 409–439 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, H. & Kim, J.S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91, 6064–6068 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santiago, Y. et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 105, 5809–5814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  8. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc-finger nucleases. Science 300, 764 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller, J.C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Wolfe, S.A., Nekludova, L. & Pabo, C.O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gersbach, C.A., Gaj, T. & Barbas, C.F. III. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47, 2309–2318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Moscou, M.J. & Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Maggio, I. & Goncalves, M.A. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol. 33, 280–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Ain, Q.U., Chung, J.Y. & Kim, Y.H. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J. Control. Release 205, 120–127 (2015).

    Article  CAS  Google Scholar 

  24. Chu, G., Hayakawa, H. & Berg, P. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamm, A., Krott, N., Breibach, I., Blindt, R. & Bosserhoff, A.K. Efficient transfection method for primary cells. Tissue Eng. 8, 235–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C.A. & Okayama, H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques 6, 632–638 (1988).

    CAS  PubMed  Google Scholar 

  27. Felgner, P.L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eguchi, A. et al. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. 276, 26204–26210 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Torchilin, V.P. et al. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc. Natl. Acad. Sci. USA 100, 1972–1977 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mello de Queiroz, F., Sanchez, A., Agarwal, J.R., Stuhmer, W. & Pardo, L.A. Nucleofection induces non-specific changes in the metabolic activity of transfected cells. Mol. Biol. Rep. 39, 2187–2194 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Maurisse, R. et al. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol. 10, 9 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li, H. et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217–221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anguela, X.M. et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122, 3283–3287 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ran, F.A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33, 102–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Asuri, P. et al. Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol. Ther. 20, 329–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Handel, E.M. et al. Versatile and efficient genome editing in human cells by combining zinc-finger nucleases with adeno-associated viral vectors. Hum. Gene Ther. 23, 321–329 (2012).

    Article  PubMed  CAS  Google Scholar 

  39. Ellis, B.L., Hirsch, M.L., Porter, S.N., Samulski, R.J. & Porteus, M.H. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration–approved drugs. Gene Ther. 20, 35–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Senis, E. et al. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol. J. 9, 1402–1412 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Joglekar, A.V. et al. Integrase-defective lentiviral vectors as a delivery platform for targeted modification of adenosine deaminase locus. Mol. Ther. 21, 1705–1717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kabadi, A.M., Ousterout, D.G., Hilton, I.B. & Gersbach, C.A. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42, e147 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Heckl, D. et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat. Biotechnol. 32, 941–946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holkers, M. et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 41, e63 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Mock, U. et al. Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Sci. Rep. 4, 6409 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, Y. et al. A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 31, 251–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Perez, E.E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maggio, I. et al. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci. Rep. 4, 5105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng, R. et al. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett. 588, 3954–3958 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Holkers, M. et al. Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nat. Methods 11, 1051–1057 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Bobis-Wozowicz, S. et al. Non-integrating gamma-retroviral vectors as a versatile tool for transient zinc-finger nuclease delivery. Sci. Rep. 4, 4656 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Phang, R.Z. et al. Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells. Stem Cells Transl. Med. 2, 935–945 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu, H. et al. Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre/LoxP cassette exchange in human-induced pluripotent stem cells. Nucleic Acids Res. 41, e180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tay, F.C. et al. Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells. J. Gene Med. 15, 384–395 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Lau, C.H. et al. Genetic rearrangements of variable di-residue (RVD)-containing repeat arrays in a baculoviral TALEN system. Mol. Ther. Methods Clin. Dev. 1, 14050 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Pruett-Miller, S.M., Reading, D.W., Porter, S.N. & Porteus, M.H. Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet. 5, e1000376 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gaj, T., Guo, J., Kato, Y., Sirk, S.J. & Barbas, C.F. III Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods 9, 805–807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hendel, A., Fine, E.J., Bao, G. & Porteus, M.H. Quantifying on- and off-target genome editing. Trends Biotechnol. 33, 132–140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, J., Gaj, T., Wallen, M.C. & Barbas, C.F. III. Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Mol. Ther. Nucleic Acids 4, e232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Song, Y. et al. Expression, purification and characterization of zinc-finger nuclease to knockout the goat beta-lactoglobulin gene. Protein Expr. Purif. 112, 1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Gaj, T., Liu, J., Anderson, K.E., Sirk, S.J. & Barbas, C.F. III. Protein delivery using Cys2-His2 zinc-finger domains. ACS Chem. Biol. 9, 1662–1667 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaj, T. & Liu, J. Direct protein delivery to mammalian cells using cell-permeable Cys2-His2 zinc-finger domains. J. Vis. Exp. doi:10.3791/52814 (2015).

  68. Chen, Z. et al. Receptor-mediated delivery of engineered nucleases for genome modification. Nucleic Acids Res. 41, e182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cai, Y., Bak, R.O. & Mikkelsen, J.G. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. Elife 3, e01911 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liu, J., Gaj, T., Patterson, J.T., Sirk, S.J. & Barbas, C.F. III. Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS ONE 9, e85755 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ru, R. et al. Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen. 2, 5–12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, S., Kim, D., Cho, S.W., Kim, J. & Kim, J.S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, S., Staahl, B.T., Alla, R.K. & Doudna, J.A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3, e04766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zuris, J.A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Ramakrishna, S. et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020–1027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. D'Astolfo, D.S. et al. Efficient intracellular delivery of native proteins. Cell 161, 674–690 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Doyon, Y. et al. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat. Methods 7, 459–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8, 753–755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Olson, B.J. & Markwell, J. Assays for determination of protein concentration. Curr. Protoc. Protein Sci. 48, 3.4.1–3.4.29 (2007).

    Google Scholar 

  80. Walker, J.M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5–8 (1994).

    CAS  PubMed  Google Scholar 

  81. Kruger, N.J. The Bradford method for protein quantitation. Methods Mol. Biol. 32, 9–15 (1994).

    CAS  PubMed  Google Scholar 

  82. Pruett-Miller, S.M. & Davis, G.D. Donor plasmid design for codon and single base genome editing using zinc finger nucleases. Methods Mol. Biol. 1239, 219–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guo, J., Gaj, T. & Barbas, C.F. III. Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J. Mol. Biol. 400, 96–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Segal, D.J., Crotty, J.W., Bhakta, M.S., Barbas, C.F. III & Horton, N.C. Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA. J. Mol. Biol. 363, 405–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Mak, A.N., Bradley, P., Cernadas, R.A., Bogdanove, A.J. & Stoddard, B.L. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335, 716–719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wingfield, P.T. Preparation of soluble proteins from Escherichia coli. Curr. Protoc. Protein Sci. 78, 6.2.1–6.2.22 (2014).

    Google Scholar 

  89. Guschin, D.Y. et al. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Bergkessel, M. & Guthrie, C. Colony PCR. Methods Enzymol. 529, 299–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Gonzalez, B. et al. Modular system for the construction of zinc-finger libraries and proteins. Nat. Protoc. 5, 791–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, H.J., Lee, H.J., Kim, H., Cho, S.W. & Kim, J.S. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 1279–1288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maeder, M.L., Thibodeau-Beganny, S., Sander, J.D., Voytas, D.F. & Joung, J.K. Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat. Protoc. 4, 1471–1501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, S., Lee, M.J., Kim, H., Kang, M. & Kim, J.S. Preassembled zinc-finger arrays for rapid construction of ZFNs. Nat. Methods 8, 7 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Bhakta, M.S. et al. Highly active zinc-finger nucleases by extended modular assembly. Genome Res. 23, 530–538 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gupta, A. et al. An optimized two-finger archive for ZFN-mediated gene targeting. Nat. Methods 9, 588–590 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sander, J.D. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat. Methods 8, 67–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Sanjana, N.E. et al. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30, 460–465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schmid-Burgk, J.L., Schmidt, T., Kaiser, V., Honing, K. & Hornung, V. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat. Biotechnol. 31, 76–81 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.J. Sirk for critical reading of the manuscript. This work was supported by the National Institutes of Health (DP1CA174426 to C.F.B.), The Skaggs Institute for Chemical Biology (to C.F.B.), the Institute for Basic Science (IBS-R021-D1 to J.-S.K.) and ShanghaiTech University (to J.L.). Molecular graphics were generated by PyMol.

Author information

Authors and Affiliations

Authors

Contributions

J.L., T.G. and C.F.B. conceived the study; J.L., T.G., C.F.B. and J.-S.K. designed the research; J.L., Y.Y., N.W., S.S., S.K. and C.N.K. performed the experiments; and T.G., J.L. and J.-S.K. wrote the manuscript.

Corresponding authors

Correspondence to Jia Liu or Jin-Soo Kim.

Ethics declarations

Competing interests

J.-S.K. is a co-founder of ToolGen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Gaj, T., Yang, Y. et al. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc 10, 1842–1859 (2015). https://doi.org/10.1038/nprot.2015.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.117

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research