Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Click chemistry for targeted protein ubiquitylation and ubiquitin chain formation

Abstract

Herein we describe a simple protocol for the efficient generation of site-specific ubiquitin-protein conjugates using click chemistry. By using two different methods to expand the genetic code, the two bio-orthogonal functionalities that are necessary for CuI-catalyzed azide-alkyne cycloaddition (CuAAC), an alkyne and an azide, are co-translationally incorporated into the proteins of interest with unnatural amino acids. Protein ubiquitylation is subsequently carried out with the purified proteins in vitro by CuAAC. In addition, we provide a protocol for the incorporation of two unnatural amino acids into a single ubiquitin, resulting in a 'bifunctional' protein that contains both an alkyne and an azide functionality, thereby enabling assembly of free ubiquitin chains as well as ubiquitin chains conjugated to a target protein. Our procedure enables the synthesis of nonhydrolyzable ubiquitin-protein conjugates within 1 week (given that the relevant cDNAs are at hand), and it yields conjugates in milligram quantities from 1-liter expression cultures. The approach described herein is faster and less laborious than other methods, and it requires only standard molecular biology equipment. Moreover, the protocol can be readily adapted to achieve conjugation at any site of any target protein, which facilitates the generation of custom-tailored ubiquitin-protein conjugates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of accessible protein-protein conjugates using this protocol.
Figure 2: Incorporation of unnatural amino acids Aha and Plk in nascent proteins.
Figure 3: Maps of vectors used in this protocol and scheme of GST-Ub fusion.
Figure 4: SDS-PAGE analysis of the click reactions for purified Ub G76Aha, Ub K11Plk G76Aha and Pol beta K61Plk.
Figure 5: Experimental guidelines for the generation of functionalized proteins.

Similar content being viewed by others

References

  1. Gallagher, S.S., Sable, J.E., Sheetz, M.P. & Cornish, V.W. An in vivo covalent TMP-tag based on proximity-induced reactivity. ACS Chem. Biol. 4, 547–556 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, D.S. et al. Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. J. Am. Chem. Soc. 134, 792–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nikic, I. et al. Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew. Chem. Int. Ed. 53, 2245–2249 (2014).

    Article  CAS  Google Scholar 

  5. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Coin, I. et al. Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. Cell 155, 1258–1269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haruki, H., Gonzalez, M.R. & Johnsson, K. Exploiting ligand-protein conjugates to monitor ligand-receptor interactions. PLoS ONE 7, e37598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arbely, E. et al. Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proc. Natl. Acad. Sci. USA 108, 8251–8256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, S. et al. A facile strategy for selective incorporation of phosphoserine into histones. Angew. Chem. Int. Ed. 52, 5771–5775 (2013).

    Article  CAS  Google Scholar 

  10. McGinty, R.K., Kim, J., Chatterjee, C., Roeder, R.G. & Muir, T.W. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453, 812–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prescher, J.A. & Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hein, C.D., Liu, X.M. & Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res. 25, 2216–2230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kolb, H.C., Finn, M.G. & Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  14. Kolb, H.C. & Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 8, 1128–1137 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Moses, J.E. & Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Huisgen, R. Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed. 2, 633–645 (1963).

    Article  Google Scholar 

  17. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  18. Tornoe, C.W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Speers, A.E., Adam, G.C. & Cravatt, B.F. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Speers, A.E. & Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Godula, K., Rabuka, D., Nam, K.T. & Bertozzi, C.R. Synthesis and microcontact printing of dual end-functionalized mucin-like glycopolymers for microarray applications. Angew. Chem. Int. Ed. 48, 4973–4976 (2009).

    Article  CAS  Google Scholar 

  22. Ju, J. et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc. Natl. Acad. Sci. USA 103, 19635–19640 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tolstyka, Z.P. et al. Chemoselective immobilization of proteins by microcontact printing and bio-orthogonal click reactions. ChemBioChem 14, 2464–2471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jang, H., Fafarman, A., Holub, J.M. & Kirshenbaum, K. Click to fit: versatile polyvalent display on a peptidomimetic scaffold. Org. Lett. 7, 1951–1954 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Liebert, T., Hänsch, C. & Heinze, T. Click chemistry with polysaccharides. Macromol. Rapid Commun. 27, 208–213 (2006).

    Article  CAS  Google Scholar 

  26. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Gramlich, P.M., Wirges, C.T., Gierlich, J. & Carell, T. Synthesis of modified DNA by PCR with alkyne-bearing purines followed by a click reaction. Org. Lett. 10, 249–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Eger, S. et al. Generation of a mono-ubiquitinated PCNA mimic by click chemistry. ChemBioChem 12, 2807–2812 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Eger, S., Scheffner, M., Marx, A. & Rubini, M. Synthesis of defined ubiquitin dimers. J. Am. Chem. Soc. 132, 16337–16339 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Schneider, D., Schneider, T., Rösner, D., Scheffner, M. & Marx, A. Improving bioorthogonal protein ubiquitylation by click reaction. Bioorg. Med. Chem. 21, 3430–3435 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Schneider, T. et al. Dissecting ubiquitin signaling with linkage-defined and protease resistant ubiquitin chains. Angew. Chem. Int. Ed. 53, 12925–12929 (2014).

    Article  CAS  Google Scholar 

  32. Spasser, L. & Brik, A. Chemistry and biology of the ubiquitin signal. Angew. Chem. Int. Ed. 51, 6840–6862 (2012).

    Article  CAS  Google Scholar 

  33. Welchman, R.L., Gordon, C. & Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Haglund, K. & Dikic, I. Ubiquitylation and cell signaling. EMBO J. 24, 3353–3359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Ciechanover, A. & Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hoeller, D., Hecker, C.M. & Dikic, I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat. Rev. Cancer 6, 776–788 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Glickman, M.H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Pham, A.D. & Sauer, F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289, 2357–2360 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Lohrum, M.A., Woods, D.B., Ludwig, R.L., Balint, E. & Vousden, K.H. C-terminal ubiquitination of p53 contributes to nuclear export. Mol. Cell Biol. 21, 8521–8532 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bavikar, S.N. et al. Chemical synthesis of ubiquitinated peptides with varying lengths and types of ubiquitin chains to explore the activity of deubiquitinases. Angew. Chem. Int. Ed. 51, 758–763 (2012).

    Article  CAS  Google Scholar 

  45. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Kannouche, P.L., Wing, J. & Lehmann, A.R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Ulrich, H.D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388–3397 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iwai, K. Linear polyubiquitin chains: a new modifier involved in NFkappaB activation and chronic inflammation, including dermatitis. Cell Cycle 10, 3095–3104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Pickart, C.M. & Raasi, S. Controlled synthesis of polyubiquitin chains. Methods Enzymol. 399, 21–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Rape, M. Assembly of k11-linked ubiquitin chains by the anaphase-promoting complex. Subcell. Biochem. 54, 107–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Kim, J. et al. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459–471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar, K.S. et al. Total chemical synthesis of a 304 amino acid K48-linked tetraubiquitin protein. Angew. Chem. Int. Ed. 50, 6137–6141 (2011).

    Article  CAS  Google Scholar 

  58. Moyal, T., Bavikar, S.N., Karthikeyan, S.V., Hemantha, H.P. & Brik, A. Polymerization behavior of a bifunctional ubiquitin monomer as a function of the nucleophile site and folding conditions. J. Am. Chem. Soc. 134, 16085–16092 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Haj-Yahya, M. et al. Synthetic polyubiquitinated alpha-Synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology. Proc. Natl. Acad. Sci. USA 110, 17726–17731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hemantha, H.P. et al. Nonenzymatic polyubiquitination of expressed proteins. J. Am. Chem. Soc. 136, 2665–2673 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Chatterjee, C., McGinty, R.K., Fierz, B. & Muir, T.W. Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat. Chem. Biol. 6, 267–269 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, J., Ai, Y., Wang, J., Haracska, L. & Zhuang, Z. Chemically ubiquitylated PCNA as a probe for eukaryotic translesion DNA synthesis. Nat. Chem. Biol. 6, 270–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, K., Gong, P., Gokhale, P. & Zhuang, Z. Chemical protein polyubiquitination reveals the role of a noncanonical polyubiquitin chain in DNA damage tolerance. ACS Chem. Biol. 9, 1685–1691 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Shanmugham, A. et al. Nonhydrolyzable ubiquitin-isopeptide isosteres as deubiquitinating enzyme probes. J. Am. Chem. Soc. 132, 8834–8835 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Jung, J.E. et al. Functional ubiquitin conjugates with lysine-epsilon-amino-specific linkage by thioether ligation of cysteinyl-ubiquitin peptide building blocks. Bioconjug. Chem. 20, 1152–1162 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Trang, V.H. et al. Nonenzymatic polymerization of ubiquitin: single-step synthesis and isolation of discrete ubiquitin oligomers. Angew. Chem. Int. Ed. 51, 13085–13088 (2012).

    Article  CAS  Google Scholar 

  67. Castaneda, C. et al. Nonenzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme. J. Am. Chem. Soc. 133, 17855–17868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dixon, E.K., Castañeda, C.A., Kashyap, T.R., Wang, Y. & Fushman, D. Nonenzymatic assembly of branched polyubiquitin chains for structural and biochemical studies. Bioorg. Med. Chem. 21, 3421–3429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh, R.K., Sundar, A. & Fushman, D. Nonenzymatic rubylation and ubiquitination of proteins for structural and functional studies. Angew. Chem. Int. Ed. 53, 6120–6125 (2014).

    Article  CAS  Google Scholar 

  70. Virdee, S., Ye, Y., Nguyen, D.P., Komander, D. & Chin, J.W. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat. Chem. Biol. 6, 750–757 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Sommer, S., Weikart, N.D., Brockmeyer, A., Janning, P. & Mootz, H.D. Expanded click conjugation of recombinant proteins with ubiquitin-like modifiers reveals altered substrate preference of SUMO2-modified Ubc9. Angew. Chem. Int. Ed. 50, 9888–9892 (2011).

    Article  CAS  Google Scholar 

  72. Weikart, N.D., Sommer, S. & Mootz, H.D. Click synthesis of ubiquitin dimer analogs to interrogate linkage-specific UBA domain binding. Chem. Commun. 48, 296–298 (2012).

    Article  CAS  Google Scholar 

  73. Brik, A. et al. 1,2,3-Triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. ChemBioChem 6, 1167–1169 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Bock, V.D., Perciaccante, R., Jansen, T.P., Hiemstra, H. & van Maarseveen, J.H. Click chemistry as a route to cyclic tetrapeptide analogues: synthesis of cyclo-[Pro-Val-psi(triazole)-Pro-Tyr]. Org. Lett. 8, 919–922 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Horne, W.S., Stout, C.D. & Ghadiri, M.R. A heterocyclic peptide nanotube. J. Am. Chem. Soc. 125, 9372–9376 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Horne, W.S., Yadav, M.K., Stout, C.D. & Ghadiri, M.R. Heterocyclic peptide backbone modifications in an alpha-helical coiled coil. J. Am. Chem. Soc. 126, 15366–15367 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dresselhaus, T., Weikart, N.D., Mootz, H.D. & Waller, M.P. Naturally and synthetically linked lys48 diubiquitin: a QM/MM study. RCS Adv. 3, 16122–16129 (2013).

    CAS  Google Scholar 

  78. Bekes, M. et al. DUB-resistant ubiquitin to survey ubiquitination switches in mammalian cells. Cell Rep. 5, 826–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Young, T.S., Ahmad, I., Yin, J.A. & Schultz, P.G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Hong, V., Presolski, S.I., Ma, C. & Finn, M.G. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48, 9879–9883 (2009).

    Article  CAS  Google Scholar 

  81. Nguyen, D.P. et al. Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNA(CUA) pair and click chemistry. J. Am. Chem. Soc. 131, 8720–8721 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Dower, W.J., Miller, J.F. & Ragsdale, C.W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127–6145 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Johnson, D.B. et al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat. Chem. Biol. 7, 779–786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lajoie, M.J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pott, M., Schmidt, M.J. & Summerer, D. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. ACS Chem. Biol. 9, 2815–2822 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Lim, S.I., Mizuta, Y., Takasu, A., Kim, Y.H. & Kwon, I. Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I)-catalyzed azide-alkyne cycloaddition with retained activity. PLoS ONE 9, e98403 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bundy, B.C. & Swartz, J.R. Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein-protein click conjugation. Bioconjug. Chem. 21, 255–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Schoffelen, S., Lambermon, M.H., van Eldijk, M.B. & van Hest, J.C. Site-specific modification of Candida antarctica lipase B via residue-specific incorporation of a non-canonical amino acid. Bioconjug. Chem. 19, 1127–1131 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Uttamapinant, C. et al. Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew. Chem. Int. Ed. 51, 5852–5856 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft within the SFB 969 'Chemical and Biological Principles of Cellular Proteostasis' and the SPP 1623, as well as the Carl Zeiss Stiftung (stipend to T.S.). We also acknowledge the Konstanz Research School Chemical Biology for support.

Author information

Authors and Affiliations

Authors

Contributions

A.M., M.S., D.R., T.S. and D.S. designed the research. D.R., T.S. and D.S. expressed and purified recombinant proteins and performed the experiments. A.M., M.S., D.R., T.S. and D.S. wrote the manuscript.

Corresponding authors

Correspondence to Martin Scheffner or Andreas Marx.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Data (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rösner, D., Schneider, T., Schneider, D. et al. Click chemistry for targeted protein ubiquitylation and ubiquitin chain formation. Nat Protoc 10, 1594–1611 (2015). https://doi.org/10.1038/nprot.2015.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.106

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing