Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Studying tumor growth in Drosophila using the tissue allograft method

Abstract

This protocol describes a method to allograft Drosophila larval tissue into adult fly hosts that can be used to assay the tumorigenic potential of mutant tissues. The tissue of interest is dissected, loaded into a fine glass needle and implanted into a host. Upon implantation, nontransformed tissues do not overgrow beyond their normal size, but malignant tumors grow without limit, are invasive and kill the host. By using this method, Drosophila malignant tumors can be transplanted repeatedly, for years, and therefore they can be aged beyond the short life span of flies. Because several hosts can be implanted using different pieces from a single tumor, the method also allows the tumor mass to be increased to facilitate further studies that may require large amounts of tissue (i.e., genomics, proteomics and so on). This method also provides an operational definition of hyperplastic, benign and malignant growth. The injection procedure itself requires only 1 d. Tumor development can then be monitored until the death of the implanted hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart outlining the key stages of the PROCEDURE.
Figure 2: The injection equipment.
Figure 3: Dissection of larval brain and optic lobe isolation.
Figure 4: Allograft procedure.
Figure 5: Example of tumor growth and downstream application.
Figure 6: Isolation of allografted tumors.

Similar content being viewed by others

References

  1. Gonzalez, C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat. Rev. Cancer 13, 172–183 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Pandey, U.B. & Nichols, C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411–436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stark, M.B. A benign tumor that is hereditary in Drosophila. Proc. Natl. Acad. Sci. USA 12, 573–580 (1919).

    Article  Google Scholar 

  4. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophilaneoplastic tumor suppressors. Genes Dev. 18, 1909–1925 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Brumby, A.M. & Richardson, H.E. Using Drosophila melanogaster to map human cancer pathways. Nat. Rev. Cancer 5, 626–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Caussinus, E. & Gonzalez, C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat. Genet. 37, 1125–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, M., Pastor-Pareja, J.C. & Xu, T. Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463, 545–548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beaucher, M., Hersperger, E., Page-McCaw, A. & Shearn, A. Metastatic ability of Drosophila tumors depends on MMP activity. Dev. Biol. 303, 625–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Figueroa-Clarevega, A. & Bilder, D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev. Cell 33, 47–55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwon, Y. et al. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell 33, 36–46 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirabayashi, S., Baranski, T.J. & Cagan, R.L. Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell 154, 664–675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Castellanos, E., Dominguez, P. & Gonzalez, C. Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr. Biol. 18, 1209–1214 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Janic, A., Mendizabal, L., Llamazares, S., Rossell, D. & Gonzalez, C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330, 1824–1827 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Dar, A.C., Das, T.K., Shokat, K.M. & Cagan, R.L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486, 80–84 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vidal, M., Wells, S., Ryan, A. & Cagan, R. ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res. 65, 3538–3541 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Read, R.D., Cavenee, W.K., Furnari, F.B. & Thomas, J.B. A Drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet. 5, e1000374 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Witte, H.T., Jeibmann, A., Klambt, C. & Paulus, W. Modeling glioma growth and invasion in Drosophila melanogaster. Neoplasia 11, 882–888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gladstone, M. & Su, T.T. Chemical genetics and drug screening in Drosophila cancer models. J. Genet. Genomics 38, 497–504 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Willoughby, L.F. et al. An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis. Model Mech. 6, 521–529 (2013).

    CAS  PubMed  Google Scholar 

  21. Sullivan, W., Ashburner,, M. & Hawley, R.S. Drosophila Protocols (Cold Spring Harbor Laboratory Press, 2000).

  22. Gonzalez, C. Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat. Rev. Genet. 8, 462–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Rossi, F. & Gonzalez, C. Synergism between altered cortical polarity and the PI3K/TOR pathway in the suppression of tumour growth. EMBO Rep. 13, 157–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Chambers, R. A simple micro-injection apparatus made of steel. Science 54, 552–553 (1921).

    Article  CAS  PubMed  Google Scholar 

  25. Ephrussi, B. & Beadle, G.W. A technique for transplantation of Drosophila. Amer. Nat. 70, 218–225 (1936).

    Article  Google Scholar 

  26. Beadle, G.W. & Ephrussi, B. Transplantation in Drosophila. Proc. Natl. Acad. Sci. USA 21, 642–646 (1935).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bodenstein, D. The postembryonic development of Drosophila. in Biology of Drosophila (Demerec, M., ed.) 275–367 (Wiley, New York, 1950).

  28. Ursprung, H. In vitro culture of Drosophila imaginal discs. in Methods in Developmental Biology (eds. Wilt, F. & Wessels, N.) 485–492 (Thomas Y. Crowell Company, 1967).

  29. Hadorn, E. Transdetermination in cells. Sci. Am. 219, 110–114 (1968).

    Article  CAS  PubMed  Google Scholar 

  30. Schubiger, G. Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster. Dev. Biol. 26, 277–295 (1971).

    Article  CAS  PubMed  Google Scholar 

  31. Schubiger, G. & Hadorn, E. Auto- and allotypic differentiation in vivo cultivated foreleg blastemas of Drosophila melanogaster. Dev. Biol. 17, 584–602 (1968).

    Article  CAS  PubMed  Google Scholar 

  32. Gateff, E. & Schneiderman, H.A. Neoplasms in mutant and cultured wild-type tissues of Drosophila. Natl. Cancer Inst. Monogr. 31, 365–397 (1969).

    CAS  PubMed  Google Scholar 

  33. Woodhouse, E., Hersperger, E. & Shearn, A. Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes. Dev. Genes Evol. 207, 542–550 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Watson, K.L., Justice, R.W. & Bryant, P.J. Drosophila in cancer research: the first fifty tumor suppressor genes. J. Cell Sci. Suppl. 18, 19–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Herranz, H., Hong, X., Hung, N.T., Voorhoeve, P.M. & Cohen, S.M. Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model. Genes Dev. 26, 1602–1611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dekanty, A., Barrio, L., Muzzopappa, M., Auer, H. & Milan, M. Aneuploidy-induced delaminating cells drive tumorigenesis in Drosophila epithelia. Proc. Natl. Acad. Sci. USA 109, 20549–20554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eroglu, E. et al. SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells. Cell 156, 1259–1273 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Sievers, C., Comoglio, F., Seimiya, M., Merdes, G. & Paro, R. A deterministic analysis of genome integrity during neoplastic growth in Drosophila. PLoS ONE 9, e87090 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lin, H. & Spradling, A.C. Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev. Biol. 159, 140–152 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Srdic, Z. & Jacobs-Lorena, M. Drosophila egg chambers develop to mature eggs when cultured in vivo. Science 202, 641–643 (1978).

    Article  CAS  PubMed  Google Scholar 

  41. Roberts, P.A., Iredale, R.B. & Buckley, P.M. The consequences of fat body transplantation into young and old Drosophila. Exp. Gerontol. 20, 123–130 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. Shearn, A. & Garen, A. Genetic control of imaginal disc development in Drosophila. Proc. Natl. Acad. Sci. USA 71, 1393–1397 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Markstein, M. et al. Systematic screen of chemotherapeutics in Drosophila stem cell tumors. Proc. Natl. Acad. Sci. USA 111, 4530–4535 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katsuyama, T. & Paro, R. Innate immune cells are dispensable for regenerative growth of imaginal discs. Mech. Dev. 130, 112–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Morais da Silva, S., Moutinho-Santos, T. & Sunkel, C.E. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition. J. Cell Biol. 201, 385–393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rebollo, E., Llamazares, S., Reina, J. & Gonzalez, C. Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes. PLoS Biol. 2, E8 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Golubovsky, M.D., Weisman, N.Y., Arbeev, K.G., Ukraintseva, S.V. & Yashin, A.I. Decrease in the lgl tumor suppressor dose in Drosophila increases survival and longevity in stress conditions. Exp. Gerontol. 41, 819–827 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Roegiers, F. et al. Frequent unanticipated alleles of lethal giant larvae in Drosophila second chromosome stocks. Genetics 182, 407–410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J. Szabad kindly hosted and demonstrated this technique to C.G. at the Department of Medical Biology, University of Szeged, in 2003. His contribution is greatly appreciated. Work in our laboratory is supported by grants AdG 2011 294603 advanced grant from the European Research Council, BFU2012–32522 from the Spanish Ministerio de Economí y Competitividad (MINECO) and Agaur 2014 SGR 100 from Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Contributions

C.G. and F.R. designed the experiments. C.G. implemented the protocol. F.R. conducted the experiments and prepared all the supporting media. C.G. and F.R. wrote the paper.

Corresponding author

Correspondence to Cayetano Gonzalez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, F., Gonzalez, C. Studying tumor growth in Drosophila using the tissue allograft method. Nat Protoc 10, 1525–1534 (2015). https://doi.org/10.1038/nprot.2015.096

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.096

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing