Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo rapid gene delivery into postmitotic neocortical neurons using iontoporation

Abstract

This protocol describes a method for directing the expression of genes of interest into postmitotic neocortical neurons in vivo. Microinjection of a DNA plasmid-amphiphilic molecule mix into the neocortex followed by delivery of an ad hoc electric pulse protocol during the first few days of life in mice allows rapid, focal and efficient expression of genes in postmitotic neurons. Compared with other gene delivery techniques such as in utero electroporation and viral infection, this method allows rapid (12 h), focal (50–200 μm), mosaic-like (50 to several hundred neurons) targeting of postmitotic neurons within existing circuits. This 'iontoporation' protocol, which can be completed within 20 min per mouse, allows straightforward assessment of genetic constructs in postmitotic cortical neurons and subsequent genetic, histological and physiological investigations of gene function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic summary of the iontoporation protocol.
Figure 2: Targeting postmitotic neurons with iontoporation.
Figure 3: Defining the stereotaxic coordinates of the target site.

Similar content being viewed by others

References

  1. De la Rossa, A. et al. In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat. Neurosci. 16, 193–200 (2013).

    Article  CAS  Google Scholar 

  2. Chang, D.C. & Reese, T.S. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58, 1–12 (1990).

    Article  CAS  Google Scholar 

  3. Hovis, K.R., Padmanabhan, K. & Urban, N.N. A simple method of in vitro electroporation allows visualization, recording, and calcium imaging of local neuronal circuits. J. Neurosci. Methods 191, 1–10 (2010).

    Article  CAS  Google Scholar 

  4. Capecchi, M.R. High-efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488 (1980).

    Article  CAS  Google Scholar 

  5. Barnabé-Heider, F. et al. Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nat. Methods 5, 189–196 (2008).

    Article  Google Scholar 

  6. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552–1558 (2006).

    Article  CAS  Google Scholar 

  7. Washbourne, P. & McAllister, A.K. Techniques for gene transfer into neurons. Curr. Opin. Neurobiol. 12, 566–573 (2002).

    Article  CAS  Google Scholar 

  8. De Vry, J. et al. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog. Neurobiol. 92, 227–244 (2010).

    Article  CAS  Google Scholar 

  9. Rouaux, C. & Arlotta, P. Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat. Cell Biol. 15, 214–221 (2013).

    Article  CAS  Google Scholar 

  10. LoTurco, J., Manent, J.-B. & Sidiqi, F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb. Cortex 19 (suppl. 1), i120–i125 (2009).

    Article  Google Scholar 

  11. Judkewitz, B., Rizzi, M., Kitamura, K. & Häusser, M. Targeted single-cell electroporation of mammalian neurons in vivo. Nat. Protoc. 4, 862–869 (2009).

    Article  CAS  Google Scholar 

  12. Matsui, A., Yoshida, A.C., Kubota, M., Ogawa, M. & Shimogori, T. Mouse in utero electroporation: controlled spatiotemporal gene transfection. J. Vis. Exp. 54, e3024 (2011).

  13. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    Article  CAS  Google Scholar 

  14. dal Maschio, M. et al. High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat. Commun. 3, 960 (2012).

    Article  Google Scholar 

  15. Taniguchi, H., Lu, J. & Huang, Z.J. The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339, 70–74 (2013).

    Article  CAS  Google Scholar 

  16. Mizuno, H., Hirano, T. & Tagawa, Y. Pre-synaptic and post-synaptic neuronal activity supports the axon development of callosal projection neurons during different post-natal periods in the mouse cerebral cortex. Eur. J. Neurosci. 31, 410–424 (2010).

    Article  Google Scholar 

  17. Molotkov, D.A., Yukin, A.Y., Afzalov, R.A. & Khiroug, L.S. Gene delivery to postnatal rat brain by non-ventricular plasmid injection and electroporation. J. Vis. Exp. 43, e2244 (2010).

    Google Scholar 

  18. Ohmura, N., Kawasaki, K., Satoh, T. & Hata, Y. In vivo electroporation to physiologically identified deep brain regions in postnatal mammals. Brain Struct. Funct. 10.1007/s00429-014-0724-x (2014).

  19. Inoue, M., Mishina, M. & Ueda, H. Locus-specific rescue of GluRepsilon1 NMDA receptors in mutant mice identifies the brain regions important for morphine tolerance and dependence. J. Neurosci. 23, 6529–6536 (2003).

    Article  CAS  Google Scholar 

  20. Wei, F. et al. Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J. Neurosci. 23, 8402–8409 (2003).

    Article  CAS  Google Scholar 

  21. Konishi, Y., Stegmüller, J., Matsuda, T., Bonni, S. & Bonni, A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 303, 1026–1030 (2004).

    Article  CAS  Google Scholar 

  22. Akaneya, Y., Jiang, B. & Tsumoto, T. RNAi-induced gene silencing by local electroporation in targeting brain region. J. Neurophysiol. 93, 594–602 (2005).

    Article  CAS  Google Scholar 

  23. Guo, W. et al. Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J. Neurosci. 26, 126–137 (2006).

    Article  CAS  Google Scholar 

  24. Nagayama, S. et al. In vivo simultaneous tracing and Ca2+ imaging of local neuronal circuits. Neuron 53, 789–803 (2007).

    Article  CAS  Google Scholar 

  25. Nevian, T. & Helmchen, F. Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch. 454, 675–688 (2007).

    Article  CAS  Google Scholar 

  26. Wang, H., Ko, C.H., Koletar, M.M., Ralph, M.R. & Yeomans, J. Casein kinase I epsilon gene transfer into the suprachiasmatic nucleus via electroporation lengthens circadian periods of tau mutant hamsters. Eur. J. Neurosci. 25, 3359–3366 (2007).

    Article  Google Scholar 

  27. Fan, J. et al. Up-regulation of anterior cingulate cortex NR2B receptors contributes to visceral pain responses in rats. Gastroenterology 136, 1732–1740 (2009).

    Article  CAS  Google Scholar 

  28. De Vry, J. et al. Low current-driven micro-electroporation allows efficient in vivo delivery of nonviralDNA into the adult mouse brain. Mol. Ther. 18, 1183–1191 (2009).

    Article  Google Scholar 

  29. Papale, A., Cerovic, M. & Brambilla, R. Viral vector approaches to modify gene expression in the brain. J. Neurosci. Methods 185, 1–14 (2009).

    Article  CAS  Google Scholar 

  30. Lentz, T.B., Gray, S.J. & Samulski, R.J. Viral vectors for gene delivery to the central nervous system. Neurobiol. Dis. 48, 179–188 (2012).

    Article  CAS  Google Scholar 

  31. Beier, K. & Cepko, C. Viral tracing of genetically defined neural circuitry. J. Vis. Exp. 68, e4253 (2012).

    Google Scholar 

  32. Osakada, F. & Callaway, E.M. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8, 1583–1601 (2013).

    Article  Google Scholar 

  33. Jager, L. et al. A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat. Protoc. 4, 547–564 (2009).

    Article  CAS  Google Scholar 

  34. Liashkovich, I., Meyring, A., Kramer, A. & Shahin, V. Exceptional structural and mechanical flexibility of the nuclear pore complex. J. Cell. Physiol. 226, 675–682 (2011).

    Article  CAS  Google Scholar 

  35. Vandenbroucke, R.E., Lucas, B., Demeester, J., De Smedt, S.C. & Sanders, N.N. Nuclear accumulation of plasmid DNA can be enhanced by non-selective gating of the nuclear pore. Nucleic Acids Res. 35, e86 (2007).

    Article  Google Scholar 

  36. De Marco García, N.V., Karayannis, T. & Fishell, G. Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472, 351–355 (2011).

    Article  Google Scholar 

  37. Matsuda, T. & Cepko, C.L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl. Acad. Sci. USA 104, 1027–1032 (2007).

    Article  CAS  Google Scholar 

  38. Cohen, S.N., Chang, A.C., Boyer, H.W. & Helling, R.B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 70, 3240 (1973).

    Article  CAS  Google Scholar 

  39. Ausubel, F.M. et al. Short Protocols in Molecular Biology (John Wiley & Sons, 1995).

  40. Cetin, A., Komai, S., Eliava, M., Seeburg, P.H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nat. Protoc. 1, 3166–3173 (2007).

    Article  Google Scholar 

  41. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Gulf Professional Publishing, 2004).

Download references

Acknowledgements

We thank the members of our laboratory for helpful discussions. We also thank A. Benoit and F. Smets for technical assistance, L. Frangeul for help with the manuscript and L. Telley for photomicrograph image acquisition. Work in the Jabaudon laboratory is supported by the Swiss National Science Foundation, the Leenaards Foundation, the Brain and Behavior Foundation and the Synapsy Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.D.l.R. and D.J. developed the protocol and wrote the manuscript; A.D.l.R. performed the experiments.

Corresponding author

Correspondence to Denis Jabaudon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De la Rossa, A., Jabaudon, D. In vivo rapid gene delivery into postmitotic neocortical neurons using iontoporation. Nat Protoc 10, 25–32 (2015). https://doi.org/10.1038/nprot.2015.001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.001

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research