Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Advances in water treatment by adsorption technology

Abstract

Among various water purification and recycling technologies, adsorption is a fast, inexpensive and universal method. The development of low-cost adsorbents has led to the rapid growth of research interests in this field. The present protocol describes salient features of adsorption and details experimental methodologies for the development and characterization of low-cost adsorbents, water treatment and recycling using adsorption technology including batch processes and column operations. The protocol describes the development of inexpensive adsorbents from waste materials, which takes only 1–2 days, and an adsorption process taking 15–120 min for the removal of pollutants. The applications of batch and column processes are discussed, along with suggestions to make this technology more popular and applicable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: A typical column breakthrough curve.
Figure 4

Similar content being viewed by others

References

  1. Franklin, L.B. Wastewater engineering: Treatment, disposal and reuse (McGraw Hill, New York, 1991).

    Google Scholar 

  2. Droste, R.L. Theory and practice of water and wastewater treatment (John Wiley & Sons, New York, 1997).

    Google Scholar 

  3. John, D.Z. Handbook of drinking water quality: Standards and controls (Van Nostrand Reinhold, New York, 1990).

    Google Scholar 

  4. Ali, I. & Aboul-Enein, H.Y. Chiral pollutants: Distribution, toxicity and analysis by chromatography and capillary electrophoresis (John Wiley & Sons, Chichester, UK, 2004).

    Google Scholar 

  5. Ali, I. & Aboul-Enein, H.Y. Instrumental methods in metal ions speciation: Chromatography, capillary electrophoresis and electrochemistry (Taylor & Francis, New York, 2006).

    Book  Google Scholar 

  6. E.E.C. Drinking Water Directive (Official Journal N229/11, Directive 80/778/EEC) (1988).

  7. Vettorazzi, G. International regulatory aspects for pesticide chemicals Vol. 1 p. 141 (CRC, Boca Raton, USA, 1979).

    Google Scholar 

  8. Toxic Substance Control Act (US EPA III) 344–348 (1984).

  9. Moore, J.W. & Ramamoorthy, S. Heavy metals in natural waters: Applied monitoring and impact assessment (Springer, New York, 1984).

    Book  Google Scholar 

  10. Dich, J., Zahm, S.H., Hanberg, A. & Adami, H.O. Pesticides and cancer. A review. Cancer Causes Control 8, 420–443 (1997).

    Article  CAS  Google Scholar 

  11. Brusick, D. Genotoxicity of phenolic antioxidants. Toxicol. Indust. Health 9, 223–230 (1993).

    Article  CAS  Google Scholar 

  12. Mattson, J.S. & Mark, H.B. Activated carbon surface chemistry and adsorption from aqueous solution (Marcel Dekker, New York, 1971).

    Google Scholar 

  13. Cheremisinoff, P.N. & Ellerbush, F. Carbon adsorption handbook (Ann Arbor Science, Michigan, 1979).

    Google Scholar 

  14. Parekh, B.S. Reverse osmosis technology: Applications for high purity water production (Marcel Dekker, New York, 1988).

    Google Scholar 

  15. Zahid, A. Reverse Osmosis (Kluwer Academic, Munich Germany, 1993).

    Google Scholar 

  16. McNulty, J.T. in Ion exchange technology (eds. Naden, D. & Streat, M.) (Ellis Norwood, Chichester, 1984).

    Google Scholar 

  17. Nemerow, N. & Dasgupta, A. Industrial and hazardous waste treatment (Van Nostrand Reinhold, New York, 1991).

    Google Scholar 

  18. Samuel, D.F. & Osman, M.A. Adsorption processes for water treatment (Butterworth, Boston, 1987).

    Google Scholar 

  19. Faust, S.D. & Aly, O.M. Chemistry of water treatment (Butterworth, Stoneham, Massachusetts, 1983).

    Google Scholar 

  20. Suffet, I.H. & McGuire, M.J. Activated carbon adsorption of organics from the aqueous phase (Ann Arbor Science, Ann Arbor, Michigan, 1980).

    Google Scholar 

  21. Slejko, F.L. Adsorption Technology, a step-by-step approach to process evaluation and application (Marcel Dekker, New York, 1985).

    Google Scholar 

  22. Gupta, V.K. & Ali, I. in Encyclopaedia of surface and colloid science (ed. Somasundaran, P.) 1–34 (Marcel Dekker, New York, 2003).

    Google Scholar 

  23. Ali, I. & Jain, C.K. in Water Encyclopedia: Domestic, municipal, and industrial water supply and waste disposal (ed. Lehr, J.) (John Wiley & Sons, New York, 2005).

    Google Scholar 

  24. Weber, W.J. Jr. & Vanvliet, B.M. in Activated carbon adsorption of organics from the aqueous phase (eds. Suffet I.H. & McGuire, M.J.) (Ann Arbor Science, Ann Arbor Michigan, 1980).

    Google Scholar 

  25. Pollard, S.J.T., Fowler, G.D., Sollars, C.J. & Perry, R. Low-cost adsorbents for waste and wastewater treatment: a review. Sci. Total Environ. 116, 31–52 (1992).

    Article  CAS  Google Scholar 

  26. Gupta, V.K. & Ali, I. in Encyclopedia of surface and colloid science Vol.1 (ed. Hubbard, A.) (Marcel Dekker, New York, 2002).

    Google Scholar 

  27. McKay,, G. Use of adsorbents for the removal of pollutants from wastewater (CRC Press, London, 1996).

    Google Scholar 

  28. Radojevic, M. & Bashkin, V. Practical environmental analysis (Royal Society of Chemistry, London, 1999).

    Google Scholar 

  29. Mark, S., Dale, N. & Goldstein, J. Scanning electron microscopy and x-ray microanalysis (Kluwer Academic, New York, 2002).

    Google Scholar 

  30. Amelinckx, S., van Dyck, D., van Landuyt, J. & van Tendeloo, G. (eds.) Electron microscopy: Principles and fundamentals (Wiley, New York, 1997).

    Book  Google Scholar 

  31. Lyman, C.E. et al. Scanning electron microscopy, x-ray microanalysis, and analytical electron microscopy: a laboratory workbook (Springer, New York, 1990).

    Book  Google Scholar 

  32. Williams, D.B. & Carter, C.B. Transmission electron microscopy: A textbook for materials science Vol. 4 (Springer, New York, 1996).

    Book  Google Scholar 

  33. Vogel, A.I. Textbook of quantitative chemical analysis (ELBS Publications, London, 1989).

    Google Scholar 

  34. Hutchins, R.A. Designing activated carbon systems. Chemical Engineering. J. Am. Chem. Eng. 80, 133–138 (1973).

    CAS  Google Scholar 

  35. Aoyama, M., Tsuda, M., Cho, N.S. & Doi, S. Adsorption of trivalent chromium from dilute solution by conifer leaves. Wood Sci. Technol. 34, 55–63 (2000).

    Article  CAS  Google Scholar 

  36. Masri, M.S., Reuter, F.W. & Friedman, M. Binding of metal cations by natural substances. J. Appl. Polymer Sci. 18, 675–681 (1974).

    Article  Google Scholar 

  37. Chui, V.M.D., Mok, K.W., Ng, C.Y., Luong, B.P. & Ma, K.K. Removal and recovery of copper(II), chromium(III) and nickel(II) from solutions using crude shrimp chitin packed in small columns. Environ. Internat. 22, 463–468 (1006).

    Article  Google Scholar 

  38. Leusch, A., Holan, Z.R. & Volesky, B. Biosorption of heavy metal metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae. J. Chem. Tech. Biotechnol. 62, 279–288 (1995).

    Article  CAS  Google Scholar 

  39. Gupta, V.K. Equilibrium uptake, sorption dynamics, process development and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag – a low cost adsorbent. Ind. Eng. Chem. Res. 37, 192–202 (1998).

    Article  CAS  Google Scholar 

  40. Srivastava, S.K., Gupta, V.K. & Mohan, D. Removal of lead and chromium by activated slag – A blast-furnace waste. J. Environ. Eng. 123, 461–468 (1997).

    Article  CAS  Google Scholar 

  41. Gupta, V.K., Mohan, D. & Sharma, S. Removal of lead from wastewater using bagasse fly ash – a sugar industry waste material. Sep. Sci. Technol 33, 1331–1341 (1998).

    Article  CAS  Google Scholar 

  42. Gupta, V.K., Mohan, D., Sharma, S. & Park, K.T. Removal of chromium (VI) from electroplating industry wastewater using bagasse fly ash – a sugar industry waste material. Environmentalist 19, 129–136 (1999).

    Article  Google Scholar 

  43. Gupta, V.K. & Ali, I. Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep. Purific. Technol. 18, 131–140 (2000).

    Article  CAS  Google Scholar 

  44. Gupta, V.K. & Ali, I. Removal of DDD and DDE from wastewater using bagasse fly ash. Water Res. 35, 33–40 (2001).

    Article  CAS  Google Scholar 

  45. Gupta, V.K., Chandra, S., Agarwal, S., Jain, C.K. & Ali, I. Removal of lindane and malathion from wastewater using bagasse fly ash – a sugar industry waste. Water Res. 36, 2483–2490 (2002).

    Article  CAS  Google Scholar 

  46. Gupta, V.K., Ali, I. & Saini, V.K. Removal of chlorophenols from wastewater using red mud: an aluminum industry waste. Environ. Sci. Technol. 38, 4012–4018 (2004).

    Article  CAS  Google Scholar 

  47. Su, C. & Puls, R.W. In situ remediation of arsenic in simulated groundwater using zerovalent iron: Laboratory column tests on combined effects of phosphate and silicate. Environ. Sci. Technol. 37, 2582–2587 (2003).

    Article  CAS  Google Scholar 

  48. DeMarco, M.J., SenGupta, A.K. & Greenleaf, J.E. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res. 37, 164–176 (2003).

    Article  CAS  Google Scholar 

  49. Lenoble, V. et al. Dynamic arsenic removal on a MnO2-loaded resin. J. Collo. Inter. Sci. 280, 62–67 (2004).

    Article  CAS  Google Scholar 

  50. Kundu, S. et al. Removal of arsenic using hardened paste of portland cement: Batch adsorption and column study. Water Res. 38, 3780–3790 (2004).

    Article  CAS  Google Scholar 

  51. Takanashi, H., Tanaka, A., Nakajim, T. & Ohki, A. Arsenic removal from the groundwater by a newly developed adsorbent. Water Sci. Technol. 50, 23–32 (2004).

    Article  CAS  Google Scholar 

  52. Al-Haj-Ali, A. & Al-Hunaidi, T. Breakthrough curves and column design parameters for sorption of lead ions by natural zeolite. Environ. Technol. 25, 1009–1019 (2004).

    Article  CAS  Google Scholar 

  53. Rezaee, A., Derayat, J., Mortazavi, S.B., Yamini, Y. & Jafarzadeh, M.T. Removal of mercury from chlor-alkali industry wastewater using Acetobacter xylinum cellulose. Am. J. Environ. Sci. 1, 102–105 (2005).

    Article  CAS  Google Scholar 

  54. Mittal, A., Mittal, J. & Kurup, L. Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption. J. Hazard. Mat. 137, 591–602 (2006).

    Article  CAS  Google Scholar 

  55. Reid, A. Preliminary tests on a novel adsorbent for the removal of aluminum from water treatment facility wastewater. J. New Engl. Water Works Ass. 120, 17–28 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Ali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Adsorption characteristics of different adsorbents for water treatment22 (PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, I., Gupta, V. Advances in water treatment by adsorption technology. Nat Protoc 1, 2661–2667 (2006). https://doi.org/10.1038/nprot.2006.370

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.370

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing