Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes

Abstract

Mitochondrial dysfunction has been associated with a variety of currently marketed therapeutics and has also been implicated in many disease states. Alterations in the rate of oxygen consumption are an informative indicator of mitochondrial dysfunction, but the use of such assays has been limited by the constraints of traditional measurement approaches. Here, we present a high-throughput, fluorescence-based methodology for the analysis of mitochondrial oxygen consumption using a phosphorescent oxygen-sensitive probe, standard microtitre plates and plate reader detection. The protocol describes the isolation of mitochondria from animal tissue, initial establishment and optimization of the oxygen consumption assay, subsequent screening of compounds for mitochondrial toxicity (uncoupling and inhibition), data analysis and generation of dose-response curves. It allows dozens of compounds (or hundreds of assay points) to be analyzed in a single day, and can be further up-scaled, automated and adapted for other enzyme- and cell-based screening applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrammatic representation of measurement principles.
Figure 2: Recommended plate maps.
Figure 3: Sample data output for inhibition analysis showing intensity profiles (a), transformed linearized profiles (b) and inversed normalized slopes (c) showing the effect of increasing KCN concentrations on glutamate/malate-driven ADP-activated respiration.

Similar content being viewed by others

References

  1. Waterhouse, N.J., Ricci, J.-E. & Green, D.R. And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie 84, 113–121 (2002).

    Article  CAS  Google Scholar 

  2. Amacher, D.E. Drug-associated mitochondrial toxicity and its detection. Curr. Med. Chem. 12, 1829–1839 (2005).

    Article  CAS  Google Scholar 

  3. Ballinger, S.W. Mitochondrial dysfunction in cardiovascular disease. Free Radic. Biol. Med. 38, 1278–1295 (2005).

    Article  CAS  Google Scholar 

  4. Moyle, G. Mechanisms of HIV and nucleoside reverse transcriptase inhibitor injury to mitochondria. Antivir. Ther. 10, M47–M52 (2005).

    CAS  PubMed  Google Scholar 

  5. Sullivan, P.G. & Brown, M.R. Mitochondrial aging and dysfunction in Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 407–410 (2005).

    Article  CAS  Google Scholar 

  6. Mattson, M.P. & Kroemer, G. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol. Med. 9, 196–205 (2003).

    Article  CAS  Google Scholar 

  7. Lewis, W., Day, B.J. & Copeland, W.C. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat. Rev. Drug Discov. 2, 812–822 (2003).

    Article  CAS  Google Scholar 

  8. Brunmair, B. et al. Fenofibrate impairs rat mitochondrial function by inhibition of respiratory complex I. J. Pharmacol. Exp. Ther. 311, 109–114 (2004).

    Article  CAS  Google Scholar 

  9. Wallace, K.B. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol. Toxicol. 93, 105–115 (2003).

    Article  CAS  Google Scholar 

  10. Sirvent, P. et al. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem. Biophys. Res. Commun. 338, 1426–1434 (2005).

    Article  CAS  Google Scholar 

  11. Kangas, L., Gronroos, M. & Nieminen, A.L. Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro . Med. Biol. 62, 338–343 (1984).

    CAS  PubMed  Google Scholar 

  12. Simon, H.U., Haj-Yehia, A. & Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415–418 (2000).

    Article  CAS  Google Scholar 

  13. Li, N. et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516–8525 (2003).

    Article  CAS  Google Scholar 

  14. Scaduto, R.C. Jr. & Grotyohann, L.W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 76, 469–477 (1999).

    Article  CAS  Google Scholar 

  15. Reers, M. et al. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol. 260, 406–417 (1995).

    Article  CAS  Google Scholar 

  16. Hynes, J. et al. Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes. Toxicol. Sci. 92, 186–200 (2006).

    Article  CAS  Google Scholar 

  17. Crompton, M., Virji, S., Doyle, V., Johnson, N. & Ward, J.M. The mitochondrial permeability transition pore. Biochem. Soc. Symp. 66, 167–179 (1999).

    Article  CAS  Google Scholar 

  18. Vander Heiden, M.G. et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl. Acad. Sci. USA 97, 4666–4671 (2000).

    Article  CAS  Google Scholar 

  19. Clark, L.C. Electrochemical device for chemical analysis. US patent 2913386 (1959).

  20. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Plenum Press, New York, 1999).

    Book  Google Scholar 

  21. Papkovsky, D.B. Methods in optical oxygen sensing: protocols and critical analyses. Methods Enzymol. 381, 715–735 (2004).

    Article  CAS  Google Scholar 

  22. Demas, J.N., DeGraff, B.A. & Coleman, P.B. Oxygen sensors based on luminescence quenching. Anal. Chem. 71, 793A–800A (1999).

    Article  CAS  Google Scholar 

  23. O'Riordan, T.C., Buckley, D., Ogurtsov, V., O'Connor, R. & Papkovsky, D.B. A cell viability assay based on monitoring respiration by optical oxygen sensing. Anal. Biochem. 278, 221–227 (2000).

    Article  CAS  Google Scholar 

  24. Wodnicka, M. et al. Novel fluorescent technology platform for high throughput cytotoxicity and proliferation assays. J. Biomol. Screen. 5, 141–152 (2000).

    Article  CAS  Google Scholar 

  25. John, G.T., Klimant, I., Wittmann, C. & Heinzle, E. Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol. Bioeng. 81, 829–836 (2003).

    Article  CAS  Google Scholar 

  26. Deshpande, R.R. & Heinzle, E. On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors. Biotechnol. Lett. 26, 763–767 (2004).

    Article  CAS  Google Scholar 

  27. Deshpande, R.R. et al. Microplates with integrated oxygen sensors for kinetic cell respiration measurement and cytotoxicity testing in primary and secondary cell lines. Assay Drug Dev. Technol. 3, 299–307 (2005).

    Article  CAS  Google Scholar 

  28. Hynes, J., Floyd, S., Soini, A.E., O'Connor, R. & Papkovsky, D.B. Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J. Biomol. Screen. 8, 264–272 (2003).

    Article  CAS  Google Scholar 

  29. O'Donovan, C., Hynes, J., Yashunski, D. & Papkovsky, D.B. Phosphorescent oxygen-sensitive materials for biological applications. J. Mater. Chem. 15, 2946–2951 (2005).

    Article  CAS  Google Scholar 

  30. Alderman, J. et al. A low-volume platform for cell-respirometric screening based on quenched-luminescence oxygen sensing. Biosens. Bioelectron. 19, 1529–1535 (2004).

    Article  CAS  Google Scholar 

  31. O'Mahony, F.C. et al. Optical oxygen microrespirometry as a platform for environmental toxicology and animal model studies. Environ. Sci. Technol. 39, 5010–5014 (2005).

    Article  CAS  Google Scholar 

  32. Papkovsky, D.B., Hynes, J. & Will, Y. Respirometric screening technology for ADME-Tox studies. Expert Opin. Drug Metab. Toxicol. 2, 313–323 (2006).

    Article  CAS  Google Scholar 

  33. Arain, S. et al. Gas sensing in microplates with optodes: influence of oxygen exchange between sample, air, and plate material. Biotechnol. Bioeng. 90, 271–280 (2005).

    Article  CAS  Google Scholar 

  34. Hynes, J., O'Riordan, T.C., Curtin, J., Cotter, T.G. & Papkovsky, D.B. Fluorescence based oxygen uptake analysis in the study of metabolic responses to apoptosis induction. J. Immunol. Methods 306, 193–201 (2005).

    Article  CAS  Google Scholar 

  35. O'Mahony, F.C. & Papkovsky, D.B. Rapid high throughput assessment of aerobic bacteria in complex samples by fluorescence-based oxygen respirometry. Appl. Environ. Microbiol. 72, 1279–1287 (2006).

    Article  CAS  Google Scholar 

  36. Hynes, J., Hill, R. & Papkovsky, D.B. The use of a fluorescence-based oxygen uptake assay in the analysis of cytotoxicity. Toxicol. In Vitro 20, 785–792 (2006).

    Article  CAS  Google Scholar 

  37. Guide for the Care and Use of Laboratory Animals. NIH Publication No. 85-23 (NIH, Bethesda, MD, USA, revised 1985).

  38. Lapidus, R.G. & Sokolove, P.M. Spermine inhibition of the permeability transition of isolated rat liver mitochondria: an investigation of mechanism. Arch. Biochem. Biophys. 306, 246–253 (1993).

    Article  CAS  Google Scholar 

  39. Messer, J.I., Jackman, M.R. & Willis, W.T. Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria. Am. J. Physiol. Cell Physiol. 286, C565–C572 (2004).

    Article  CAS  Google Scholar 

  40. Stern, O. & Volmer, M. Uber die ablingungszeit der fluoreszenz. Physik. Zeitschr. 20, 183–188 (1919).

    CAS  Google Scholar 

Download references

Acknowledgements

Parts of this work were supported by the Marine Institute and Marine RTDI Measure, Productive Sector Operational Programme, National Development Plan 2000–2006, Grant-aid agreement No AT-04-01-01, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri B Papkovsky.

Ethics declarations

Competing interests

D. Papkovsky is one of the stakeholders of Luxcol Biosciences. All the other authors have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Will, Y., Hynes, J., Ogurtsov, V. et al. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nat Protoc 1, 2563–2572 (2006). https://doi.org/10.1038/nprot.2006.351

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.351

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing