Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

5′ end cDNA amplification using classic RACE

Abstract

The 5′ ends of transcripts provide important information about transcription initiation sites and the approximate locations of local cis-acting enhancer elements; it is therefore important to establish the 5′ ends with some precision. RACE (rapid amplification of cDNA ends) PCR is useful for quickly obtaining full length cDNAs for mRNAs for which only part of the sequence is known and to identify alternative 5′ or 3′ ends of fully sequenced genes. The method consists of using PCR to amplify, from complex mixtures of cellular mRNA, the regions between the known parts of the sequence and non-specific tags appended to the ends of the cDNA. Whereas the poly(A) tail serves to provide such a tag at the 3′ end of the mRNA, an artificial one needs to be generated at the 5′ end, and various approaches have been described to address this step. The classical scheme for 5′ RACE described here is simple, suffices in many instances in which RACE is needed and can be performed in 1–3 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of the setting in which Classic RACE is used.
Figure 2: A schematic representation of Classic RACE.
Figure 3: The advantage of new RACE over classic RACE.
Figure 4: Schematic representation of cap-switching RACE.

Similar content being viewed by others

References

  1. Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts by amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  2. Loh, E.L., Elliott, J.F., Cwirla, S., Lanier, L.L. & Davis, M.M. Polymerase chain reaction with single sided specificity: analysis of T cell receptor δ chain. Science 243, 217–220 (1989).

    Article  CAS  Google Scholar 

  3. Ohara, O., Dorit, R.I. & Gilbert, W. One-sided PCR: the amplification of cDNA. Proc. Natl. Acad. Sci USA. 86, 5673–5677 (1989).

    Article  CAS  Google Scholar 

  4. Frohman, M.A. & Martin, G.R. Rapid amplification of cDNA ends using nested primers. Tech. 1, 165–173 (1989).

    Google Scholar 

  5. Frohman, M.A. In PCR Protocols and Applications: A Laboratory Manual (eds. Innis, M., Gelfand, D., Sninsky, J. and White, T.) 28–38 (1989).

    Google Scholar 

  6. Frohman, M.A. Rapid amplification of cDNA for generation of full-length cDNA ends: thermal RACE. Methods Enzymol. 218, 340–356 (1993).

    Article  CAS  Google Scholar 

  7. Frohman, M.A. In PCR. The Polymerase Chain Reaction. Methods in Molecular Biology Series (eds. Mullis, K. B., Ferre, F. & Gibbs, R. A.) 14–37 (Humana Press, Totowa, New Jersey, 1994).

    Book  Google Scholar 

  8. Bertling, W.M., Beier, F. & Reichenberger, E. Determination of 5′ ends of specific mRNAs by DNA Ligase-dependent amplification. PCR Methods Applic. 3, 95–99 (1993).

    Article  CAS  Google Scholar 

  9. Borson, N.D., Salo, W.L. & Drewes, L.R. A lock-docking oligo(dT) primer for 5′ and 3′ RACE PCR. PCR Methods Applic. 2, 144–148 (1992).

    Article  CAS  Google Scholar 

  10. Dumas, J.B., Edwards, M., Delort, J. & Mallet, J. Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5′ ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Res. 19, 5227–5233 (1991).

    Article  Google Scholar 

  11. Fritz, J.D., Greaser, M.L. & Wolff, J.A. A novel 3′ extension technique using random primers in RNA-PCR. Nucleic Acids Res. 119, 3747 (1991).

    Article  Google Scholar 

  12. Jain, R., Gomer, R.H. & Murtagh, J.J.J. Increasing specificity from the PCR-RACE technique. BioTechniques 12, 58–59 (1992).

    CAS  PubMed  Google Scholar 

  13. Monstein, H.J., Thorup, J.U., Folkesson, R., Johnsen, A.H. & Rehfeld, J.F. cDNA deduced procionin — structure and expression in protochordates resemble that of procholecystokinin in mammals. FEBS Letters 331, 60–64 (1993).

    Article  CAS  Google Scholar 

  14. Rashtchian, A., Buchman, G.W., Schuster, D.M. & Berninger, M.S. Uracil DNA glycosylase-mediated cloning of PCR-amplified DNA: application to genomic and cDNA cloning. Anal. Biochem. 206, 91–97 (1992).

    Article  CAS  Google Scholar 

  15. Templeton, N.S., Urcelay, E. & Safer, B. Reducing artifact and increasing the yield of specific DNA target fragments during PCR-RACE or anchor PCR. BioTechniques 15, 48–50 (1993).

    CAS  PubMed  Google Scholar 

  16. Scotto–Lavino, E., Du, G. & Frohman, M.A. 3′ end cDNA amplification using classic RACE. Nature Protocols (2006), doi: 10.1038/nprot.2006.481.

  17. Fromont–Racine, M., Bertrand, E., Pictet, R. & Grange, T. A highly sensitive method for mapping the 5′ termini of mRNAs. Nucleic Acids Res. 21, 1683–1684 (1993).

    Article  Google Scholar 

  18. Bertrand, E., Fromont–Racine, M., Pictet, R. & Grange, T. Visualization of the interaction of a regulatory protein with RNA in vivo. Proc. Natl. Acad. Sci. USA 90, 3496–3500 (1993).

    Article  CAS  Google Scholar 

  19. Brock, K.V., Deng, R. & Riblet, S.M. Nucleotide sequencing of 5′ and 3′ termini of bovine viral diarrhea virus by RNA ligation and PCR. Virol. Methods 38, 39–46 (1992).

    Article  CAS  Google Scholar 

  20. Liu, X. & Gorovsky, M.A. Mapping the 5′ and 3′ ends of tetrahymena-thermophila mRNAs using RNA Ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res. 21, 4954–4960 (1993).

    Article  CAS  Google Scholar 

  21. Mandl, C.W., Heinz, F.X., Puchhammer–Stockl, E. & Kunz, C. Sequencing the termini of capped viral RNA by 5′–3′ ligation and PCR. BioTechniques 10, 484–486 (1991).

    CAS  PubMed  Google Scholar 

  22. Sallie, R. Characterization of the extreme 5′ ends of RNA molecules by RNA ligation-PCR. PCR Methods Applic. 3, 54–56 (1993).

    Article  CAS  Google Scholar 

  23. Tessier, D.C., Brousseau, R. & Vernet, T. Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Anal. Biochem. 158, 171–178 (1986).

    Article  CAS  Google Scholar 

  24. Volloch, V., Schweitzer, B., Zhang, X. & Rits, S. Identification of negative-strand complements to cytochrome oxidase subunit III RNA in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 88, 10671–10675 (1991).

    Article  CAS  Google Scholar 

  25. Scotto–Lavino, E., Du, G. & Frohman, M.A. 5′ end cDNA amplification using new RACE. Nat. Protocols (2006), doi: 10.1038/nprot.2006.479.

  26. Schmidt, W.M. & Mueller, M.W. CapSelect: a highly sensitive method for 5′ CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs. Nucleic Acids Res. 27, e31 (1999).

    Article  CAS  Google Scholar 

  27. Schramm, G., Bruchhaus, I. & Roeder, T. A simple and reliable 5′-RACE approach. Nucleic Acids Res. 28, e96 (2000).

    Article  CAS  Google Scholar 

  28. Huang, J.C. & Chen, F. Simultaneous amplification of 5′ and 3′ cDNA ends based on template-switching effect and inverse PCR. Biotechniques 40, 187–189 (2006).

    Article  CAS  Google Scholar 

  29. Mica, E., Gianfranceschi, L. & Pe, M.E. Characterization of five microRNA families in maize. J. Exp. Bot. 57, 2601–2612 (2006).

    Article  CAS  Google Scholar 

  30. Wang, X.J., Reyes, J.L., Chua, N.H. & Gaasterland, T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5, r65 (2004).

    Article  Google Scholar 

  31. Schnoor, M. et al. Characterization of the synthetic compatible solute homoectoine as a potent PCR enhancer. Biochem. Biophys. Res. Commun. 322, 867–872 (2004).

    Article  CAS  Google Scholar 

  32. Shi, X. & Jarvis, D.L. A new rapid amplification of cDNA ends method for extremely guanine plus cytosine-rich genes. Anal. Biochem. 356, 222–228 (2006).

    Article  CAS  Google Scholar 

  33. Sambrook, J., Fritsch, E.F. & Maniatis, T. In Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  34. Sarker, G., Kapelner, S. & Sommer, S.S. Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res. 18, 7465 (1990).

    Article  Google Scholar 

  35. Zhang, Y. RACE all the way to the end. in Generation of cDNA libraries (ed. Ying, S.-Y.) 13–24 (Humana Press, Totow1a, NJ, 2003).

    Chapter  Google Scholar 

Download references

Acknowledgements

The author thanks Yue Zhang and the publisher for permission to use and adapt material from 'RACE all the way to the end' (ref. 35). This work was supported by awards NIHDDK 64166 and NIHGM71520 to M.A.F., and NIHGM071475 and a Scientist Development Grant from the American Heart Association to G.D. (0430096N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A Frohman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scotto–Lavino, E., Du, G. & Frohman, M. 5′ end cDNA amplification using classic RACE. Nat Protoc 1, 2555–2562 (2006). https://doi.org/10.1038/nprot.2006.480

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.480

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing