Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities

Abstract

Chemoenzymatic synthesis, which combines the flexibility of chemical synthesis and the high selectivity of enzymatic synthesis, is a powerful approach to obtain complex carbohydrates. It is a preferred method for synthesizing sialic acid-containing structures, including those with diverse naturally occurring and non-natural sialic acid forms, different sialyl linkages and different glycans that link to the sialic acid. Starting from N-acetylmannosamine, mannose or their chemically or enzymatically modified derivatives, sialic acid aldolase-catalyzed condensation reaction leads to the formation of sialic acids and their derivatives. These compounds are subsequently activated by a CMP-sialic acid synthetase and transferred to a wide range of suitable acceptors by a suitable sialyltransferase for the formation of sialosides containing natural and non-natural functionalities. The three-enzyme coupled synthesis of sialosides can be carried out in one pot without the isolation of intermediates. The time for synthesis is 4–18 h. Purification and characterization of the product can be completed within 2–3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic presentation of the one-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities.
Figure 3: Applications of the one-pot three-enzyme system to modify glycoconjugates or cells containing a terminal galactose or N-acetylgalactosamine residue.
Figure 4
Figure 5: TLC analysis of one-pot three-enzyme synthesis of sialosides using ManNAc as a sialic acid precursor and LacβProN3 as an acceptor substrate.

Similar content being viewed by others

References

  1. Angata, T. & Varki, A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–469 (2002).

    Article  CAS  Google Scholar 

  2. Schauer, R. Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499 (2000).

    Article  CAS  Google Scholar 

  3. Yu, H. et al. Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew. Chem. Int. Ed. Engl. 45, 3938–3944 (2006).

    Article  CAS  Google Scholar 

  4. Butor, C., Diaz, S. & Varki, A. High level O-acetylation of sialic acids on N-linked oligosaccharides of rat liver membranes. Differential subcellular distribution of 7- and 9-O-acetyl groups and of enzymes involved in their regulation. J. Biol. Chem. 268, 10197–10206 (1993).

    CAS  PubMed  Google Scholar 

  5. Shi, W.X., Chammas, R. & Varki, A. Linkage-specific action of endogenous sialic acid O-acetyltransferase in Chinese hamster ovary cells. J. Biol. Chem. 271, 15130–15138 (1996).

    Article  CAS  Google Scholar 

  6. Varki, A. Diversity in the sialic acids. Glycobiology 2, 25–40 (1992).

    Article  CAS  Google Scholar 

  7. Schauer, R. & Kamerling, J.P. Chemistry, biochemistry and biology of sialic acids. In Glycoproteins II (eds. Montreuil, J., Vliegenthart, J.F.G. & Schachter, H.) 243–402 (Elsevier, Amsterdam).

  8. Lewis, A.L., Nizet, V. & Varki, A. Discovery and characterization of sialic acid O-acetylation in group B Streptococcus. Proc. Natl. Acad. Sci. USA 101, 11123–11128 (2004).

    Article  CAS  Google Scholar 

  9. Chappell, M.D. & Halcomb, R.L. Enzyme-catalyzed synthesis of oligosaccharides that contain functionalized sialic acids. J. Am. Chem. Soc. 119, 3393–3394 (1997).

    Article  CAS  Google Scholar 

  10. Boons, G.J. & Demchenko, A.V. Recent advances in o-sialylation. Chem. Rev. 100, 4539–4566 (2000).

    Article  CAS  Google Scholar 

  11. Kiefel, M.J. & von Itzstein, M. Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. Chem. Rev. 102, 471–490 (2002).

    Article  CAS  Google Scholar 

  12. Izumi, M. & Wong, C.H. Microbial sialyltransferases for carbohydrate synthesis. Trends Glycosci. Glycotechnol. 13, 345–360 (2001).

    Article  CAS  Google Scholar 

  13. Joziasse, D.H. et al. Branch specificity of bovine colostrum CMP-sialic acid: Gal beta 1-4GlcNAc-R alpha 2-6-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the N-acetyllactosamine type. J. Biol. Chem. 262, 2025–2033 (1987).

    CAS  PubMed  Google Scholar 

  14. Thiem, J. & Treder, W. Synthesis of the trisaccharide Neu-5-Ac-α(2 → 6)Gal-β(1 → )GlcNAc by the use of immobilized enzymes. Angew. Chem. Int. Ed. Engl. 25, 1096–1097 (1986).

    Article  Google Scholar 

  15. Blixt, O., Allin, K., Pereira, L., Datta, A. & Paulson, J.C. Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides. J. Am. Chem. Soc. 124, 5739–5746 (2002).

    Article  CAS  Google Scholar 

  16. Wong, C.H., Halcomb, R.L., Ichikawa, Y. & Kajimoto, T. Enzymes in organic synthesis: application to the problems of carbohydrate recognition (Part 2). Angew. Chem. Int. Ed. Engl. 34, 521–546 (1995).

    Article  CAS  Google Scholar 

  17. Kajihara, Y. et al. A novel alpha-2,6-sialyltransferase: transfer of sialic acid to fucosyl and sialyl trisaccharides. J. Org. Chem. 61, 8632–8635 (1996).

    Article  CAS  Google Scholar 

  18. Fitz, W. & Wong, C.H. Oligosaccharide synthesis by enzymatic glycosidation. In Preparative Carbohydrate Chemistry (ed. Hanessian, S.) 485–504 (Marcel Dekker, New York).

  19. Ichikawa, Y., Wang, R. & Wong, C.H. Regeneration of sugar nucleotide for enzymatic oligosaccharide synthesis. Methods Enzymol. 247, 107–127 (1996).

    Article  Google Scholar 

  20. Yu, H. et al. A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 127, 17618–17619 (2005).

    Article  CAS  Google Scholar 

  21. Yu, H., Yu, H., Karpel, R. & Chen, X. Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg. Med. Chem. 12, 6427–6435 (2004).

    Article  CAS  Google Scholar 

  22. Herrler, G. et al. A synthetic sialic acid analogue is recognized by influenza C virus as a receptor determinant but is resistant to the receptor-destroying enzyme. J. Biol. Chem. 267, 12501–12505 (1992).

    CAS  PubMed  Google Scholar 

  23. Blixt, O. & Paulson, J.C. Biocatalytic preparation of N-glycolylneuraminic acid, deaminoneuraminic acid (KDN) and 9-azido-9-deoxysialic acid oligosaccharides. Adv. Synth. Catal. 345, 687–690 (2003).

    Article  CAS  Google Scholar 

  24. Wong, C.-H. Chemoenzymatic synthesis: application to the study of carbohydrate recognition. Acta Chem. Scand. 50, 211–218 (1996).

    Article  CAS  Google Scholar 

  25. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  Google Scholar 

  26. Kolb, H.C., Finn, M.G. & Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  27. Fazio, F., Bryan, M.C., Blixt, O., Paulson, J.C. & Wong, C.H. Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc. 124, 14397–14402 (2002).

    Article  CAS  Google Scholar 

  28. Wu, X., Ling, C.C. & Bundle, D.R. A new homobifunctional p-nitro phenyl ester coupling reagent for the preparation of neoglycoproteins. Org. Lett. 6, 4407–4410 (2004).

    Article  CAS  Google Scholar 

  29. Ding, Y., Alkan, S.S., Baschang, G. & Defaye, J. Synthesis of the HSA-conjugate of the S-linked thiomimetic of the branched tetrasaccharide repeating unit of the immunostimulant polysaccharide, schizophyllan. Evaluation as potential immunomodulator. Carbohydr. Res. 328, 71–76 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mizutani Foundation for Glycoscience, NIH R01GM076360, and start-up funds from the Regents of the University of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Chokhawala, H., Huang, S. et al. One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat Protoc 1, 2485–2492 (2006). https://doi.org/10.1038/nprot.2006.401

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.401

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing