Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vitro generation of germ cells from murine embryonic stem cells

Abstract

The demonstration of germ cell and haploid gamete development from embryonic stem cells (ESCs) in vitro has engendered a unique set of possibilities for the study of germ cell development and the associated epigenetic phenomenon. The process of embryoid body (EB) differentiation, like teratoma formation, signifies a spontaneous differentiation of ESCs into cells of all three germ layers, and it is from these differentiating aggregates of cells that putative primordial germ cells (PGCs) and more mature gametes can be identified and isolated. The differentiation system presented here requires the differentiation of murine ESCs into EBs and the subsequent isolation of PGCs as well as haploid male gametes from EBs at various stages of differentiation. It serves as a platform for studying the poorly understood process of germ cell allocation, imprint erasure and gamete formation, with 4–6 weeks being required to isolate PGCs as well as haploid cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The stages of germ cell and haploid gamete selection from ESC differentiation.
Figure 2: EGC clones demonstrate imprint erasure in a time-dependent manner during EB differentiation.
Figure 3: RT–PCR of germ cell-specific genes during EB differentiation.
Figure 4: Germ cell formation occurs in a time-dependent manner during EB differentiation.
Figure 5: EBs generate haploid male gametes that can be enriched by FE-J1 staining.

Similar content being viewed by others

References

  1. Wylie, C. Germ cells. Cell 96, 165–174 (1999).

    Article  CAS  Google Scholar 

  2. Lawson, K.A. & Hage, W.J. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found. Symp. 182, 68–84 discussion 84–91 (1994).

    CAS  PubMed  Google Scholar 

  3. Lawson, K.A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999).

    Article  CAS  Google Scholar 

  4. Ying, Y., Qi, X. & Zhao, G.Q. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc. Natl. Acad. Sci. USA 98, 7858–7862 (2001).

    Article  CAS  Google Scholar 

  5. Ying, Y. & Zhao, G.Q. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev. Biol. 232, 484–492 (2001).

    Article  CAS  Google Scholar 

  6. Chen, H.-H. & Geijsen, N. Stem Cells in Human Reproduction, Basic Science and Therapeutic Potential Chap. 6 (2006) in the press.

    Google Scholar 

  7. Saitou, M., Barton, S.C. & Surani, M.A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    Article  CAS  Google Scholar 

  8. Vincent, S.D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005).

    Article  CAS  Google Scholar 

  9. Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    Article  CAS  Google Scholar 

  10. Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    Article  Google Scholar 

  11. Toyooka, Y., Tsunekawa, N., Akasu, R. & Noce, T. Embryonic stem cells can form germ cells in vitro . Proc. Natl. Acad. Sci. USA 100, 11457–11462 (2003).

    Article  CAS  Google Scholar 

  12. Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154 (2004).

    Article  CAS  Google Scholar 

  13. Clark, A.T. et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum. Mol. Genet. 13, 727–739 (2004).

    Article  CAS  Google Scholar 

  14. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  Google Scholar 

  15. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  Google Scholar 

  16. Keller, G.M. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869 (1995).

    Article  CAS  Google Scholar 

  17. Kehler, J. et al. Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078–1083 (2004).

    Article  CAS  Google Scholar 

  18. Scholer, H.R., Balling, R., Hatzopoulos, A.K., Suzuki, N. & Gruss, P. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J 8, 2551–2557 (1989).

    Article  CAS  Google Scholar 

  19. Scholer, H.R., Hatzopoulos, A.K., Balling, R., Suzuki, N. & Gruss, P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J 8, 2543–2550 (1989).

    Article  CAS  Google Scholar 

  20. Payer, B. et al. Generation of stella-GFP transgenic mice: a novel tool to study germ cell development. Genesis 44, 75–83 (2006).

    Article  CAS  Google Scholar 

  21. MacGregor, G.R., Zambrowicz, B.P. & Soriano, P. Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development 121, 1487–1496 (1995).

    CAS  PubMed  Google Scholar 

  22. Fox, N., Damjanov, I., Martinez-Hernandez, A., Knowles, B.B. & Solter, D. Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues. Dev. Biol. 83, 391–398 (1981).

    Article  CAS  Google Scholar 

  23. Chang, D.H., Angelin-Duclos, C. & Calame, K. BLIMP-1: trigger for differentiation of myeloid lineage. Nat. Immunol. 1, 169–176 (2000).

    Article  CAS  Google Scholar 

  24. Koshimizu, U., Watanabe, M. & Nakatsuji, N. Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro . Dev. Biol. 168, 683–685 (1995).

    Article  CAS  Google Scholar 

  25. Mizuno, K. et al. Genes associated with the formation of germ cells from embryonic stem cells in cultures containing different glucose concentrations. Mol. Reprod. Dev. 73, 437–445 (2006).

    Article  CAS  Google Scholar 

  26. Oishi, K., Barchi, M., Au, A.C., Gelb, B.D. & Diaz, G.A. Male infertility due to germ cell apoptosis in mice lacking the thiamin carrier, Tht1. A new insight into the critical role of thiamin in spermatogenesis. Dev. Biol. 266, 299–309 (2004).

    Article  CAS  Google Scholar 

  27. Wong, W.Y., Thomas, C.M., Merkus, J.M., Zielhuis, G.A. & Steegers-Theunissen, R.P. Male factor subfertility: possible causes and the impact of nutritional factors. Fertil. Steril. 73, 435–442 (2000).

    Article  CAS  Google Scholar 

  28. Fenderson, B.A., O'Brien, D.A., Millette, C.F. & Eddy, E.M. Stage-specific expression of three cell surface carbohydrate antigens during murine spermatogenesis detected with monoclonal antibodies. Dev. Biol. 103, 117–128 (1984).

    Article  CAS  Google Scholar 

  29. Ventela, S. et al. Regulation of acrosome formation in mice expressing green fluorescent protein as a marker. Tissue Cell 32, 501–507 (2000).

    Article  CAS  Google Scholar 

  30. Kimmins, S. & Sassone-Corsi, P. Chromatin remodelling and epigenetic features of germ cells. Nature 434, 583–589 (2005).

    Article  CAS  Google Scholar 

  31. Nayernia, K. et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev. Cell 11, 125–132 (2006).

    Article  CAS  Google Scholar 

  32. Novak, I. et al. Mouse embryonic stem cells form follicle-like ovarian structures but do not progress through meiosis. Stem Cells 24, 1931–1936 (2006).

    Article  CAS  Google Scholar 

  33. Southern, E. Southern blotting. Nat. Protocols 1, 518–525 (2006).

    Article  CAS  Google Scholar 

  34. Biniszkiewicz, D. et al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell. Biol. 22, 2124–2135 (2002).

    Article  CAS  Google Scholar 

  35. Lucifero, D., Mertineit, C., Clarke, H.J., Bestor, T.H. & Trasler, J.M. Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79, 530–538 (2002).

    Article  CAS  Google Scholar 

  36. Oulad-Abdelghani, M. et al. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J. Cell Biol. 135, 469–477 (1996).

    Article  CAS  Google Scholar 

  37. Lee, J.H., Engel, W. & Nayernia, K. Stem cell protein Piwil2 modulates expression of murine spermatogonial stem cell expressed genes. Mol. Reprod. Dev. 73, 173–179 (2006).

    Article  CAS  Google Scholar 

  38. Kubota, H., Avarbock, M.R. & Brinster, R.L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 101, 16489–16494 (2004).

    Article  CAS  Google Scholar 

  39. Kaneko, K.J. & DePamphilis, M.L. Soggy, a spermatocyte-specific gene, lies 3.8 kb upstream of and antipodal to TEAD-2, a transcription factor expressed at the beginning of mouse development. Nucleic Acids Res. 28, 3982–3990 (2000).

    Article  CAS  Google Scholar 

  40. Kohn, M.J., Kaneko, K.J. & DePamphilis, M.L. DkkL1 (Soggy), a Dickkopf family member, localizes to the acrosome during mammalian spermatogenesis. Mol. Reprod. Dev. 71, 516–522 (2005).

    Article  CAS  Google Scholar 

  41. Lammers, J.H. et al. The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol. Cell. Biol. 14, 1137–1146 (1994).

    Article  CAS  Google Scholar 

  42. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  Google Scholar 

  43. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  Google Scholar 

  44. Yamaguchi, S., Kimura, H., Tada, M., Nakatsuji, N. & Tada, T. Nanog expression in mouse germ cell development. Gene Expr. Patterns 5, 639–646 (2005).

    Article  CAS  Google Scholar 

  45. Fujiwara, Y. et al. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl. Acad. Sci. USA 91, 12258–12262 (1994).

    Article  CAS  Google Scholar 

  46. Wu, M.H. et al. Sequence and expression of testis-expressed gene 14 (Tex14): a gene encoding a protein kinase preferentially expressed during spermatogenesis. Gene Expr. Patterns 3, 231–236 (2003).

    Article  CAS  Google Scholar 

  47. Meuwissen, R.L. et al. A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J 11, 5091–5100 (1992).

    Article  CAS  Google Scholar 

  48. Yoshida, K. et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol. Cell 1, 707–718 (1998).

    Article  CAS  Google Scholar 

  49. Meistrich, M.L., Mohapatra, B., Shirley, C.R. & Zhao, M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111, 483–488 (2003).

    Article  Google Scholar 

  50. Zhao, M. et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 38, 200–213 (2004).

    Article  CAS  Google Scholar 

  51. Brown, C.R. & Hartree, E.F. Identification of acrosin in mouse spermatozoa. J. Reprod. Fertil. 46, 249–251 (1976).

    Article  CAS  Google Scholar 

  52. Kitamura, K., Tanaka, H. & Nishimune, Y. Haprin, a novel haploid germ cell-specific RING finger protein involved in the acrosome reaction. J. Biol. Chem. 278, 44417–44423 (2003).

    Article  CAS  Google Scholar 

  53. Eirin-Lopez, J.M., Frehlick, L.J. & Ausio, J. Protamines, in the footsteps of linker histone evolution. J. Biol. Chem. 281, 1–4 (2006).

    Article  CAS  Google Scholar 

  54. Wang, P.J., McCarrey, J.R., Yang, F. & Page, D.C. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 27, 422–426 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George Q Daley or Niels Geijsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, J., Park, IH., Daley, G. et al. In vitro generation of germ cells from murine embryonic stem cells. Nat Protoc 1, 2026–2036 (2006). https://doi.org/10.1038/nprot.2006.303

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.303

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing