Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Patch-clamp recording from mossy fiber terminals in hippocampal slices

Abstract

Rigorous analysis of synaptic transmission in the central nervous system requires access to presynaptic terminals. However, cortical terminals have been largely inaccessible to presynaptic patch-clamp recording, due to their small size. Using improved patch-clamp techniques in brain slices, we recorded from mossy fiber terminals in the CA3 region of the hippocampus, which have a diameter of 2–5 μm. The major steps of improvement were the enhanced visibility provided by high-numerical aperture objectives and infrared illumination, the development of vibratomes with minimal vertical blade vibrations and the use of sucrose-based solutions for storage and cutting. Based on these improvements, we describe a protocol that allows us to routinely record from hippocampal mossy fiber boutons. Presynaptic recordings can be obtained in slices from both rats and mice. Presynaptic recordings can be also obtained in slices from transgenic mice in which terminals are labeled with enhanced green fluorescent protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the “magic cut”.
Figure 2: IR-difference interference contrast images of mossy fiber terminals in stratum lucidum of the hippocampal CA3 region under experimental conditions.
Figure 3: Functional criteria for unequivocal identification of hippocampal mossy fiber boutons during recording.
Figure 4: Morphological criteria for unequivocal identification of hippocampal mossy fiber boutons.

Similar content being viewed by others

References

  1. Katz, B. The Release of Neural Transmitter Substances (Liverpool University Press, Liverpool, 1969).

    Google Scholar 

  2. Llinás, R.R The Squid Giant Synapse (Oxford University Press, New York, 1999).

    Google Scholar 

  3. von Gersdorff, H. & Borst, J.G.G. Short-term plasticity at the calyx of Held. Nat. Rev. Neurosci. 3, 53–64 (2002).

    CAS  PubMed  Google Scholar 

  4. Forsythe, I.D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro . J. Physiol. (Lond.) 479, 381–387 (1994).

    Google Scholar 

  5. Borst, J.G.G., Helmchen, F. & Sakmann, B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. (Lond.) 489, 825–840 (1995).

    CAS  Google Scholar 

  6. Bollmann, J.H., Sakmann, B. & Borst, J.G.G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    CAS  PubMed  Google Scholar 

  7. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    CAS  PubMed  Google Scholar 

  8. Meinrenken, C.J., Borst, J.G.G. & Sakmann, B. Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, J.Y. & Wu, L.G. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30, 171–182 (2001).

    CAS  PubMed  Google Scholar 

  10. Malenka, R.C. & Nicoll, R.A. Long-term potentiation—a decade of progress? Science 285, 1870–1874 (1999).

    CAS  PubMed  Google Scholar 

  11. Bischofberger, J., Engel, D., Frotscher, M. & Jonas, P. Mechanisms underlying the efficacy of transmitter release at mossy fiber synapses in the hippocampal network. Pflügers Arch. 453, 361–372 (2006). 10.1007/S00424-006-0093-2

    Article  CAS  PubMed  Google Scholar 

  12. Claiborne, B.J., Amaral, D.G. & Cowan, W.M. A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J. Comp. Neurol. 246, 435–458 (1986).

    CAS  PubMed  Google Scholar 

  13. Chicurel, M.E. & Harris, K.M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).

    CAS  PubMed  Google Scholar 

  14. Acsády, L., Kamondi, A., Sík, A., Freund, T. & Buzsáki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403 (1998).

    PubMed  PubMed Central  Google Scholar 

  15. Geiger, J.R.P. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).

    CAS  PubMed  Google Scholar 

  16. Alle, H. & Geiger, J.R.P. Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293 (2006).

    CAS  PubMed  Google Scholar 

  17. Dodt, H.U. & Zieglgänsberger, W. Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res. 537, 333–336 (1990).

    CAS  PubMed  Google Scholar 

  18. Stuart, G.J., Dodt, H.U. & Sakmann, B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflügers Arch. 423, 511–518 (1993).

    CAS  PubMed  Google Scholar 

  19. Geiger, J.R.P. et al. Patch-clamp recording in brain slices with improved slicer technology. Pflügers Arch. 443, 491–501 (2002).

    CAS  PubMed  Google Scholar 

  20. Salin, P.A., Scanziani, M., Malenka, R.C. & Nicoll, R.A. Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc. Natl. Acad. Sci. USA 93, 13304–13309 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Edwards, F.A., Konnerth, A., Sakmann, B. & Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch. 414, 600–612 (1989).

    CAS  PubMed  Google Scholar 

  22. Sakmann, B. & Stuart, G. Patch-pipette recordings from the soma, dendrites, and axon of neurons in brain slices. In Single-channel Recording (eds. Sakmann, B. & Neher, E.) 199–211 (Plenum, New York, 2nd edn. 1995).

  23. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 2nd edn. (Academic press, San Diego, 1986).

    Google Scholar 

  24. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates 2nd edn. (Academic press, San Diego, 2001).

    Google Scholar 

  25. Swanson, L.W. Brain Maps: Structure of the Rat Brain 2nd edn. (Elsevier, Amsterdam, 1998).

    Google Scholar 

  26. Castaneda-Castellanos, D.R., Flint, A.C. & Kriegstein, A.R. Blind patch clamp recordings in embryonic and adult mammalian brain slices. Nat. Protocols 1, 532–542 (2006).

    CAS  PubMed  Google Scholar 

  27. Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protocols 1, 1235–1247 (2006).

    CAS  PubMed  Google Scholar 

  28. Palmer, M.J., Taschenberger, H., Hull, C., Tremere, L. & von Gersdorff, H. Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. J. Neurosci. 23, 4831–4841 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bischofberger, J., Geiger, J.R.P. & Jonas, P. Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J. Neurosci. 22, 10593–10602 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spruston, N., Lübke, J. & Frotscher, M. Interneurons in the stratum lucidum of the rat hippocampus: an anatomical and electrophysiological characterization. J. Comp. Neurol. 385, 427–440 (1997).

    CAS  PubMed  Google Scholar 

  31. Schmitz, D. et al. Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840 (2001).

    CAS  PubMed  Google Scholar 

  32. Galimberti, I. et al. Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience. Neuron 50, 749–763 (2006).

    CAS  PubMed  Google Scholar 

  33. Engel, D. & Jonas, P. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45, 405–417 (2005).

    CAS  PubMed  Google Scholar 

  34. Hallermann, S., Pawlu, C., Jonas, P. & Heckmann, M. A large pool of releasable vesicles in a cortical glutamatergic synapse. Proc. Natl. Acad. Sci. USA 100, 8975–8980 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Winterhalter, S. Becherer and M. Northemann for technical assistance and Dr. G. Stocca for biocytin filling of the bouton shown in Figure 4. We also thank Dr. P. Caroni for providing the Thy1-EGFP mice. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jonas.

Ethics declarations

Competing interests

We have an industrial collaboration with Leica Microsystems, Nussloch, Germany, to commercialize our custom-made slicer and our device for measuring vertical vibrations of the cutting blade (Geiger et al., 2002). The Institute of Physiology receives royalties of 7.5% of the net income from the Vibroslicer VT 1200 and the measuring device Vibrocheck, with a minimum of 30,000 per year.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischofberger, J., Engel, D., Li, L. et al. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 1, 2075–2081 (2006). https://doi.org/10.1038/nprot.2006.312

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.312

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing