Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly

Abstract

Engineered zinc finger nucleases can stimulate gene targeting at specific genomic loci in insect, plant and human cells. Although several platforms for constructing artificial zinc finger arrays using “modular assembly” have been described, standardized reagents and protocols that permit rapid, cross-platform “mixing-and-matching” of the various zinc finger modules are not available. Here we describe a comprehensive, publicly available archive of plasmids encoding more than 140 well-characterized zinc finger modules together with complementary web-based software (termed ZiFiT) for identifying potential zinc finger target sites in a gene of interest. Our reagents have been standardized on a single platform, enabling facile mixing-and-matching of modules and transfer of assembled arrays to expression vectors without the need for specialized knowledge of zinc finger sequences or complicated oligonucleotide design. We also describe a bacterial cell-based reporter assay for rapidly screening the DNA-binding activities of assembled multi-finger arrays. This protocol can be completed in approximately 24–26 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of (a) a zinc finger nuclease and (b) a zinc finger nuclease dimer bound to its target cleavage site.
Figure 2: Schematic of the bacterial two-hybrid reporter system.
Figure 3: Overview of restriction digest-based modular assembly.
Figure 4: Strategy for constructing B2H expression vectors and transformation of B2H reporter strains.
Figure 5: Strategy for constructing B2H reporter vectors.
Figure 6: Strategy for constructing plant or human ZFN expression vectors.

Similar content being viewed by others

References

  1. Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J.K. & Carroll, D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172, 2391–2403 (2006).

    Article  CAS  Google Scholar 

  2. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    Article  CAS  Google Scholar 

  3. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wright, D.A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705 (2005).

    Article  CAS  Google Scholar 

  5. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  Google Scholar 

  6. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  Google Scholar 

  7. Alwin, S. et al. Custom zinc-finger nucleases for use in human cells. Mol. Ther. 12, 610–617 (2005).

    Article  CAS  Google Scholar 

  8. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  Google Scholar 

  9. Smith, J., Berg, J.M. & Chandrasegaran, S. A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res. 27, 674–681 (1999).

    Article  CAS  Google Scholar 

  10. Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369 (2000).

    Article  CAS  Google Scholar 

  11. Mani, M., Smith, J., Kandavelou, K., Berg, J.M. & Chandrasegaran, S. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem. Biophys. Res. Commun. 334, 1191–1197 (2005).

    Article  CAS  Google Scholar 

  12. Porteus, M.H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–446 (2006).

    Article  CAS  Google Scholar 

  13. Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D. & Barbas, C.F. 3rd Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29466–29478 (2001).

    Article  CAS  Google Scholar 

  14. Dreier, B. et al. Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 280, 35588–35597 (2005).

    Article  CAS  Google Scholar 

  15. Dreier, B., Segal, D.J. & Barbas, C.F., 3rd Insights into the molecular recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains. J. Mol. Biol. 303, 489–502 (2000).

    Article  CAS  Google Scholar 

  16. Segal, D.J., Dreier, B., Beerli, R.R. & Barbas, C.F. 3rd Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763 (1999).

    Article  CAS  Google Scholar 

  17. Segal, D.J. The use of zinc finger peptides to study the role of specific factor binding sites in the chromatin environment. Methods 26, 76–83 (2002).

    Article  CAS  Google Scholar 

  18. Desjarlais, J.R. & Berg, J.M. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc. Natl. Acad. Sci. USA 90, 2256–2260 (1993).

    Article  CAS  Google Scholar 

  19. Mandell, J.G. & Barbas, C.F. 3rd Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–523 (2006).

    Article  CAS  Google Scholar 

  20. Liu, P.Q. et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 276, 11323–11334 (2001).

    Article  CAS  Google Scholar 

  21. Zhang, L. et al. Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J. Biol. Chem. 275, 33850–33860 (2000).

    Article  CAS  Google Scholar 

  22. Liu, Q., Xia, Z., Zhong, X. & Case, C.C. Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J. Biol. Chem. 277, 3850–3856 (2002).

    Article  CAS  Google Scholar 

  23. Bae, K.H. et al. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat. Biotechnol. 21, 275–280 (2003).

    Article  CAS  Google Scholar 

  24. Park, K.S. et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotechnol. 21, 1208–1214 (2003).

    Article  CAS  Google Scholar 

  25. Kwon, H.S., Shin, H.C. & Kim, J.S. Suppression of vascular endothelial growth factor expression at the transcriptional and post-transcriptional levels. Nucleic. Acids Res. 33, e74 (2005).

    Article  Google Scholar 

  26. Kwon, R.J. et al. Artificial transcription factors increase production of recombinant antibodies in Chinese hamster ovary cells. Biotechnol. Lett. 28, 9–15 (2006).

    Article  CAS  Google Scholar 

  27. Lee, D.K. et al. Toward a functional annotation of the human genome using artificial transcription factors. Genome Res. 13, 2708–2716 (2003).

    Article  CAS  Google Scholar 

  28. Park, K.S., Jang, Y.S., Lee, H. & Kim, J.S. Phenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells. J. Bacteriol. 187, 5496–5499 (2005).

    Article  CAS  Google Scholar 

  29. Park, K.S. et al. Identification and use of zinc finger transcription factors that increase production of recombinant proteins in yeast and mammalian cells. Biotechnol. Prog. 21, 664–670 (2005).

    Article  CAS  Google Scholar 

  30. Segal, D.J. et al. Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry 42, 2137–2148 (2003).

    Article  CAS  Google Scholar 

  31. Hurt, J.A., Thibodeau, S.A., Hirsh, A.S., Pabo, C.O. & Joung, J.K. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc. Natl. Acad. Sci. USA 100, 12271–12276 (2003).

    Article  CAS  Google Scholar 

  32. Pabo, C.O., Peisach, E. & Grant, R.A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001).

    Article  CAS  Google Scholar 

  33. Wolfe, S.A., Nekludova, L. & Pabo, C.O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).

    Article  CAS  Google Scholar 

  34. Isalan, M., Choo, Y. & Klug, A. Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc. Natl. Acad. Sci. USA 94, 5617–5621 (1997).

    Article  CAS  Google Scholar 

  35. Isalan, M., Klug, A. & Choo, Y. Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry 37, 12026–12033 (1998).

    Article  CAS  Google Scholar 

  36. Mani, M., Kandavelou, K., Dy, F.J., Durai, S. & Chandrasegaran, S. Design, engineering, and characterization of zinc finger nucleases. Biochem. Biophys. Res. Commun. 335, 447–457 (2005).

    Article  CAS  Google Scholar 

  37. Dove, S.L., Joung, J.K. & Hochschild, A. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature 386, 627–630 (1997).

    Article  CAS  Google Scholar 

  38. Joung, J.K. Identifying and modifying protein-DNA and protein-protein interactions using a bacterial two-hybrid selection system. J. Cell. Biochem. Suppl 37: 53–57 (2001).

  39. Joung, J.K., Ramm, E.I. & Pabo, C.O. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA 97, 7382–7387 (2000).

    Article  CAS  Google Scholar 

  40. Beerli, R.R., Segal, D.J., Dreier, B. & Barbas, C.F. 3rd Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl. Acad. Sci. USA 95, 14628–14633 (1998).

    Article  CAS  Google Scholar 

  41. Beerli, R.R. & Barbas, C.F., 3rd Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20, 135–141 (2002).

    Article  CAS  Google Scholar 

  42. Blancafort, P. et al. Genetic reprogramming of tumor cells by zinc finger transcription factors. Proc. Natl. Acad. Sci. USA 102, 11716–11721 (2005).

    Article  CAS  Google Scholar 

  43. Jamieson, A.C., Miller, J.C. & Pabo, C.O. Drug discovery with engineered zinc-finger proteins. Nat. Rev. Drug Discov. 2, 361–368 (2003).

    Article  CAS  Google Scholar 

  44. Klug, A. Towards therapeutic applications of engineered zinc finger proteins. FEBS Lett 579, 892–894 (2005).

    Article  CAS  Google Scholar 

  45. Lee, D.K., Seol, W. & Kim, J.S. Custom DNA-binding proteins and artificial transcription factors. Curr. Topics Med. Chem. 3, 645–657 (2003).

    Article  CAS  Google Scholar 

  46. Falke, D. & Juliano, R.L. Selective gene regulation with designed transcription factors: implications for therapy. Curr. Opin. Mol. Ther. 5, 161–166 (2003).

    CAS  PubMed  Google Scholar 

  47. Beerli, R.R., Dreier, B. & Barbas, C.F., 3rd Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    Article  CAS  Google Scholar 

  48. Ren, D., Collingwood, T.N., Rebar, E.J., Wolffe, A.P. & Camp, H.S. PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes Dev. 16, 27–32 (2002).

    Article  CAS  Google Scholar 

  49. Liang, Y. et al. Activation of vascular endothelial growth factor A transcription in tumorigenic glioblastoma cell lines by an enhancer with cell type-specific DNase I accessibility. J. Biol. Chem. 277, 20087–20094 (2002).

    Article  CAS  Google Scholar 

  50. Falke, D., Fisher, M., Ye, D. & Juliano, R.L. Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res. 31, e10 (2003).

    Article  CAS  Google Scholar 

  51. Blancafort, P., Magnenat, L. & Barbas, C.F. Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21, 269–274 (2003).

    Article  CAS  Google Scholar 

  52. Blancafort, P., Segal, D.J. & Barbas, C.F. 3rd Designing transcription factor architectures for drug discovery. Mol. Pharmacol. 66, 1361–1371 (2004).

    Article  CAS  Google Scholar 

  53. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell Biol. 21, 289–297 (2001).

    Article  CAS  Google Scholar 

  54. Porteus, M.H. & Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973 (2005).

    Article  CAS  Google Scholar 

  55. Aslanidis, C. & de Jong, P.J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18, 6069–6074 (1990).

    Article  CAS  Google Scholar 

  56. Thibodeau, S.A., Fang, R. & Joung, J.K. High-throughput beta-galactosidase assay for bacterial cell-based reporter systems. Biotechniques 36, 410–415 (2004).

    Article  CAS  Google Scholar 

  57. Miller, J.H. A Short Course in Bacterial Genetics. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992).

    Google Scholar 

  58. Rebar, E.J. & Pabo, C.O. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263, 671–673 (1994).

    Article  CAS  Google Scholar 

  59. Greisman, H.A. & Pabo, C.O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657–661 (1997).

    Article  CAS  Google Scholar 

  60. Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV–1 promoter. Nat. Biotechnol. 19, 656–660 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We respectfully acknowledge the previously published work of Carlos Barbas' group, Sangamo Biosciences and ToolGen, Inc., which described and characterized the various zinc finger modules we used as the basis for our composite archive. We thank J.-S. Kim for providing the full amino acid sequences of the ToolGen human zinc finger modules. We thank members of our groups, especially P. Zaback and J. Townsend for helpful suggestions. J.D.S. is supported by USDA MGET 2001-52100-11506. A.S.H. was supported by NIH T32 CA09216. M.H.P is supported by the NIH (R01 HL0792595 and R21 CA120681). D.F.V. is supported by NSF grant DBI 0501678. J.K.J. is supported by the NIH (R01 GM069906 and R01 GM072621) and the MGH Department of Pathology. J.K.J. dedicates this protocol to the memory of Robert L. Burghoff, a patient teacher and friend who always knew how to make molecular biology experiments work. Note added in proof: Caroll, Segal and colleagues have recently described PCR-boned methods for assembling zinc finger modules into arrays and methods for purifying ZFNs and testing their activities in vitro (Caroll, D., Morton, J.J., Beumer, K.J. & Segal, D.J. Design, construction and in vitro testing of zinc finger nucleones. Nat. Protocols 3, 1329–1341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Keith Joung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, D., Thibodeau-Beganny, S., Sander, J. et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1, 1637–1652 (2006). https://doi.org/10.1038/nprot.2006.259

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.259

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing