Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Whole-body imaging with fluorescent proteins

Abstract

The intrinsic brightness of fluorescent proteins has been taken advantage of to develop a technology of whole-body imaging of tumors and gene expression in mouse internal organs. Stable transformation with fluorescent protein genes can be effected using retroviral vectors containing a selectable marker such as neomycin resistance. The cells that stably express fluorescent proteins can then be transplanted into appropriate mouse models. For whole-body imaging, nude mice are very appropriate. If wild-type mice are used, then hair must be removed by shaving or depilation. The instruments used can range from a simple LED flashlight and appropriate excitation and emission filters to sophisticated equipment such as the Olympus OV100 with a wide range of magnification, enabling both macroimaging and microimaging. It is crucial that proper filters be used such that background autofluorescence is minimal. Fluorescent protein–based imaging technology can be used for whole-body imaging of fluorescent cells on essentially all organs. The timeline for these experiments varies from 2 days to 2 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of external and internal images of bone metastasis.
Figure 2: Whole-body fluorescence imaging allows the visualization of lymphoma dissemination.
Figure 3: Whole-body imaging of a brain tumor.
Figure 4: Correlation of whole-body and open images.
Figure 5
Figure 6: Whole-body imaging with an LED flashlight.
Figure 7: External and internal images of vAd-GFP gene expression in various organs.
Figure 8: Variable magnification whole-animal imaging system.
Figure 9: Whole-body and open imaging of GFP and RFP tumors in nude mice.

Similar content being viewed by others

References

  1. Yang, M. et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).

    Article  CAS  Google Scholar 

  2. Yang, M. et al. Real-time whole-body imaging of an orthotopic metastatic prostate cancer model expressing red fluorescent protein. Prostate 62, 374–379 (2005).

    Article  Google Scholar 

  3. Katz, M.H. et al. A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. J. Surg. Res. 113, 151–160 (2003).

    Article  CAS  Google Scholar 

  4. Peyruchaud, O. et al. Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J. Bone Miner. Res. 16, 2027–2034 (2001).

    Article  CAS  Google Scholar 

  5. Hoffman, R.M. Green fluorescent protein imaging of tumor cells in mice. Lab Anim. 31, 34–41 (2002).

    Google Scholar 

  6. Hoffman, R.M. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nature Rev. Cancer 5, 796–806 (2005).

    Article  CAS  Google Scholar 

  7. Yang, M. et al. Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc. Natl. Acad. Sci. USA 98, 2616–2621 (2001).

    Article  CAS  Google Scholar 

  8. Hemann, M.T. et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436, 807–811 (2005).

    Article  CAS  Google Scholar 

  9. Mitsiades, C.S. et al. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res 63, 6689–6696 (2003).

    CAS  PubMed  Google Scholar 

  10. Yang, M., Baranov, E., Moossa, A.R., Penman, S. & Hoffman, R.M. Visualizing gene expression by whole-body fluorescence imaging. Proc. Natl. Acad. Sci. USA 97, 12278–12282 (2000).

    Article  CAS  Google Scholar 

  11. Panoskaltsis-Mortari, A. et al. In vivo imaging of graft-versus-host-disease in mice. Blood 103, 3590–3598 (2004).

    Article  CAS  Google Scholar 

  12. Zhao, M. et al. Spatial-temporal imaging of bacterial infection and antibiotic response in intact animals. Proc. Natl. Acad. Sci. USA 98, 9814–9818 (2001).

    Article  CAS  Google Scholar 

  13. Hoffman, R.M. & Yang, M. Subcellular imaging in the live mouse. Nat. Protocols 1, 775–782 (2006).

    Article  CAS  Google Scholar 

  14. Heim, R., Cubitt, A.B. & Tsien, R.Y. Improved green fluorescence. Nature 373, 663–664 (1995).

    Article  CAS  Google Scholar 

  15. Cormack, B., Valdivia, R. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  16. Crameri, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P.C. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnol. 14, 315–319 (1996).

    Article  CAS  Google Scholar 

  17. Delagrave, S., Hawtin, R.E., Silva, C.M., Yang, M.M. & Youvan, D.C. Red-shifted excitation mutants of the green fluorescent protein. Bio/technology 13, 151–154 (1995).

    CAS  PubMed  Google Scholar 

  18. Zolotukhin, S., Potter, M., Hauswirth, W.W., Guy, J. & Muzyczka, N. A 'humanized' green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin, B.R., Giepmans, B.N., Adams, S.R. & Tsien, R.Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nature Biotechnol. 23, 1308–1314 (2005).

    Article  CAS  Google Scholar 

  20. Cody, C.W., Prasher, D.C., Westler, V.M., Prendergast, F.G. & Ward, W.W. Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32, 1212–1218 (1993).

    Article  CAS  Google Scholar 

  21. Ray, P., De, A., Min, J.-J., Tsien, R.Y. & Gambhir, S.S. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 64, 1323–1330 (2004).

    Article  CAS  Google Scholar 

  22. Burgos, J.S. et al. Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques 34, 1184–1188 (2003).

    Article  CAS  Google Scholar 

  23. Yang, M. et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc. Natl. Acad. Sci. USA 99, 3824–3829 (2002).

    Article  CAS  Google Scholar 

  24. Schmitt, C.A. et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289–298 (2002).

    Article  CAS  Google Scholar 

  25. Yang, M. et al. Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc. Natl. Acad. Sci. USA 100, 14259–14262 (2003).

    Article  CAS  Google Scholar 

  26. Yamauchi, K. et al. Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification small animal imaging system. Cancer Res. 66, 4208–4214 (2006).

    Article  CAS  Google Scholar 

  27. Yang, M., Luiken, G., Baranov, E. & Hoffman, R.M. Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. BioTechniques 39, 170–172 (2005).

    Article  CAS  Google Scholar 

  28. Hoffman, R.M. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. 3, 546–556 (2002).

    Article  CAS  Google Scholar 

  29. Chishima, T. et al. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res. 57, 2042–2047 (1997).

    CAS  PubMed  Google Scholar 

  30. Dusich, J.M., Oei, Y.A., Purchio, T. & Jenkins, D.E. In vivo detection of lung colonization and metastasis using luciferase-expressing human A549 lung cells. Proc. Am. Assoc. Cancer Res. 43, 1059 (2002).

    Google Scholar 

  31. Yamauchi, K. et al. Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res. 65, 4246–4252 (2005).

    Article  CAS  Google Scholar 

  32. Vooijs, M., Jonkers, J., Lyons, S. & Berns, A. Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res. 62, 1862–1867 (2002).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M Hoffman.

Ethics declarations

Competing interests

R.M.H. is the president of AntiCancer, which has commercial activities in the area of fluorescent protein–based imaging and has a Technology Development with Olympus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, R., Yang, M. Whole-body imaging with fluorescent proteins. Nat Protoc 1, 1429–1438 (2006). https://doi.org/10.1038/nprot.2006.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.223

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing