Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The Multi-Source Interference Task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network

Abstract

In this protocol we describe how to perform the Multi-Source Interference Task (MSIT), a validated functional magnetic resonance imaging (fMRI) task that reliably and robustly activates the cingulo-frontal-parietal cognitive/attention network (CFP network) within individual subjects. The MSIT can be used to (i) identify the cognitive/attention network in normal volunteers and (ii) test its integrity in people with neuropsychiatric disorders. It is simple to perform, can be completed in less than 15 min and is not language specific, making it appropriate for children, adults and the elderly. Since its validation, over 100 adults have performed the task. The MSIT produces a robust and temporally stable reaction time interference effect (range 200–350 ms), and single runs of the MSIT have produced CFP network activation in approximately 95% of tested subjects. The robust, reliable and temporally stable neuroimaging and performance data make the MSIT a useful task with which to study normal human cognition and psychiatric pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MSIT trial examples.
Figure 2: MSIT typical individual fMRI response.

Similar content being viewed by others

References

  1. Bush, G., Luu, P. & Posner, M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc. Natl. Acad. Sci. USA 95, 831–838 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P. & Shulman, G.L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Goldman-Rakic, P.S. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 11, 137–156 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Bush, G., Whalen, P.J., Shin, L.M. & Rauch, S.L. The counting Stroop: a cognitive interference task. Nature Protocols doi: 10.1038/nprot.2006.35

    Article  PubMed  Google Scholar 

  7. Bush, G., Shin, L.M., Holmes, J., Rosen, B.R. & Vogt, B.A. The multi-source interference task: validation study with fMRI in individual subjects. Mol. Psychiatry 8, 60–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Banich, M.T. et al. fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. J. Cogn. Neurosci. 12, 988–1,000 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. MacLeod, C.M. & MacDonald, P.A. Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention. Trends Cogn. Sci. 4, 383–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. MacDonald, A.W. 3rd, Cohen, J.D., Stenger, V.A. & Carter, C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Peterson, B.S. et al. An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol. Psychiatry 45, 1237–1258 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Bush, G. et al. Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol. Psychiatry 45, 1542–1552 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Derbyshire, S.W., Vogt, B.A. & Jones, A.K. Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex. Exp. Brain Res. 118, 52–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Bush, G. et al. The counting Stroop: an interference task specialized for functional neuroimaging—validation study with functional MRI. Hum. Brain Mapp. 6, 270–282 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taylor, S.F., Kornblum, S., Lauber, E.J., Minoshima, S. & Koeppe, R.A. Isolation of specific interference processing in the Stroop task: PET activation studies. Neuroimage 6, 81–92 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Pardo, J.V., Pardo, P.J., Janer, K.W. & Raichle, M.E. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc. Natl. Acad. Sci. USA 87, 256–259 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carter, C.S., Mintun, M. & Cohen, J.D. Interference and facilitation effects during selective attention: an H215O PET study of Stroop task performance. Neuroimage 2, 264–272 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Barch, D.M. et al. Anterior cingulate cortex and response conflict: effects of response modality and processing domain. Cereb. Cortex 11, 837–848 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ruff, C.C., Woodward, T.S., Laurens, K.R. & Liddle, P.F. The role of the anterior cingulate cortex in conflict processing: evidence from reverse stroop interference. Neuroimage 14, 1150–1158 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Leung, H.C., Skudlarski, P., Gatenby, J.C., Peterson, B.S. & Gore, J.C. An event-related functional MRI study of the stroop color word interference task. Cereb. Cortex 10, 552–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Botvinick, M., Nystrom, L.E., Fissell, K., Carter, C.S. & Cohen, J.D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Casey, B.J. et al. Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 97, 8728–8733 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Veen, V., Cohen, J.D., Botvinick, M.M., Stenger, V.A. & Carter, C.S. Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage 14, 1302–1308 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Article  Google Scholar 

  25. Eriksen, B.A. & Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).

    Article  Google Scholar 

  26. Simon, J.R. & Berbaum, K. Effect of conflicting cues on information processing: the 'Stroop effect' vs. the 'Simon Effect'. Acta Psychologica 73, 159–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Bush, G. et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc. Natl. Acad. Sci. USA 99, 523–528 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Stins, J.F., van Leeuwen, W.M. & de Geus, E.J. The multi-source interference task: the effect of randomization. J. Clin. Exp. Neuropsychol. 27, 711–717 (2005).

    Article  PubMed  Google Scholar 

  29. Heckers, S. et al. Anterior cingulate cortex activation during cognitive interference in schizophrenia. Am. J. Psychiatry 161, 707–715 (2004).

    Article  PubMed  Google Scholar 

  30. Drevets, W.C. & Raichle, M.E. Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implications for interactions between emotion and cognition. Cognition Emotion 12, 353–385 (1998).

    Article  Google Scholar 

  31. Mayberg, H.S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).

    CAS  PubMed  Google Scholar 

  32. Gusnard, D.A., Akbudak, E., Shulman, G.L. & Raichle, M.E. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 4259–4264 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simpson, J.R. Jr., Snyder, A.Z., Gusnard, D.A. & Raichle, M.E. Emotion-induced changes in human medial prefrontal cortex: I. During cognitive task performance. Proc. Natl. Acad. Sci. USA 98, 683–687 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Whalen, P.J. et al. The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol. Psychiatry 44, 1219–1228 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. McKiernan, K.A., Kaufman, J.N., Kucera-Thompson, J. & Binder, J.R. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J. Cogn. Neurosci. 15, 394–408 (2003).

    Article  PubMed  Google Scholar 

  36. Oldfield, R.C. The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsycholgia 9, 97–113 (1971).

    Article  CAS  Google Scholar 

  37. Burock, M.A., Buckner, R.L., Woldorff, M.G., Rosen, B.R. & Dale, A.M. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9, 3735–3739 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Posner, M.I. & Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Mesulam, M.M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597–613 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Williams, Z.M., Bush, G., Rauch, S.L., Cosgrove, G.R. & Eskandar, E.N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat. Neurosci. 7, 1370–1375 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Banich, M.T. et al. Prefrontal regions play a predominant role in imposing an attentional 'set': evidence from fMRI. Brain Res. Cogn. Brain Res. 10, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Badgaiyan, R.D. Executive control, willed actions, and nonconscious processing. Hum. Brain Mapp. 9, 38–41 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koski, L. & Paus, T. Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis. Exp. Brain Res. 133, 55–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Schubotz, R.I. & von Cramon, D.Y. Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Brain Res. Cogn. Brain Res. 11, 97–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Toni, I., Schluter, N.D., Josephs, O., Friston, K. & Passingham, R.E. Signal-, set- and movement-related activity in the human brain: an event-related fMRI study. Cereb. Cortex 9, 35–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Rushworth, M.F., Paus, T. & Sipila, P.K. Attention systems and the organization of the human parietal cortex. J. Neurosci. 21, 5262–5271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. George, M.S. et al. Regional brain activity when selecting a response despite interference: an H215O PET study of the Stroop and an emotional Stroop. Hum. Brain Mapp. 1, 194–209 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the National Institute of Mental Health (NIMH; Scientist Development Award 01611), the National Science Foundation, the Mental Illness and Neuroscience Discovery (MIND) Institute, the National Alliance for Research on Schizophrenia and Depression (NARSAD) and the Forrest C. Lattner Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Bush.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bush, G., Shin, L. The Multi-Source Interference Task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network. Nat Protoc 1, 308–313 (2006). https://doi.org/10.1038/nprot.2006.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.48

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing