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The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has

been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using

proton magnetic resonance spectroscopy (1H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region)

and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naı̈ve subjects with prodromal symptoms and

considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naı̈ve first- episode psychosis patients (FEP), and (3) 40

age- and sex- matched healthy controls. All subjects underwent a 1H-MRS study using a 3Tesla scanner. Glutamate levels were quantified

and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed

higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen

between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP

suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously

implicated in the pathophysiology of schizophrenia.
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INTRODUCTION

Schizophrenia is a chronic mental illness characterized by
psychotic or positive symptoms (hallucinations and delu-
sions), and negative and cognitive symptoms (apathy, social
withdrawal, decreased attention, decreased executive func-
tion, abnormal psychomotor speed of processing and
impairment of verbal memory) (APA, 2000; Rajji et al,
2009). Despite treatment advances, schizophrenia remains
as a seriously disabling, lifelong illness, that is among the
world’s top ten causes of long-term disability (Saraceno,
2002). The onset of schizophrenia is usually preceded by a
‘prodromal phase’, characterized by subthreshold psychotic
symptoms, a high likelihood of a family history of

schizophrenia, and a decline in everyday functioning (Yung
and McGorry, 1996). Longitudinal studies, in developed
countries, have found that between 19% and 35% of
individuals with prodromal symptoms experience conver-
sion to a primary psychotic illness across 1- to 2.5-year
follow-up intervals (Yung et al, 2003; Cannon et al, 2008;
Ruhrmann et al, 2010), which provides an ideal window of
opportunity to assess biomarkers associated with progres-
sion of full-blown psychotic illness.

At the present time, pharmacological management of
schizophrenia is based on antagonists or partial agonists of
the dopamine D2 receptors (Kapur et al, 2000; Seeman and
Kapur, 2000; Mamo et al, 2007). Although pharmacotherapy
improves psychotic symptoms in most patients, improve-
ment in negative and cognitive symptoms is at best minimal
(Lieberman et al, 2005), and specific therapeutic strategies
have yet to be tested in adequately powered samples to fully
assess their impact on the management and conversion rate
of the prodromal phase (Cadenhead et al, 2010).

The clinical effect of dopamine antagonists has been
the basis for ‘The dopamine hypothesis of schizophrenia’
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(Howes and Kapur, 2009a), which posits an aberrant
function of the dopaminergic system in patients with
schizophrenia (Sato et al, 1992; Laruelle et al, 1996; Abi-
Dargham et al, 1998; Hietala et al, 1999; Kapur, 2003). The
hypothesis has been bolstered by the recent observation of
an elevated striatal (18)F-dopa uptake in subjects with
prodromal symptoms (Howes et al, 2009b).

Although the dopamine hypothesis has been a useful
model in our understanding and study of the psychotic
state, it does not explain the deteriorating course in terms of
cognition and function seen in the first few years of
schizophrenia. Glutamate antagonists are well known to
induce positive and negative psychotic symptoms more
akin to schizophrenia than the positive symptoms induced
by dopamine agonists alone (Javitt, 2007). It has been
proposed that this deterioration course may be partially
explained by cortical neuronal toxicity secondary to
enhanced glutamate exposure (Sharp et al, 2001), which in
turn is thought to reflect a compensatory increase in
cortical glutamatergic activity due to hypofunction of the
N-methyl-D-aspartate (NMDA) receptor (Olney and Farber,
1995).

The interaction between glutamate and dopamine is
widely documented (Cepeda and Levine, 1998; Levine and
Cepeda, 1998; Kulagina et al, 2001; West et al, 2003; David
et al, 2005). In schizophrenia, dopaminergic dysregulation
is thought to be the final common pathway resulting from
an altered glutamatergic neurotransmission (Carlsson and
Carlsson, 1990; Javitt and Zukin, 1991; Olney and Farber,
1995). Disruption of the cortical glutamatergic afferents
induce decreased tonic dopamine release with a subsequent
disinhibition of phasic dopamine release, causing abnormal
responses to insignificant stimuli (Grace, 1991, 1993, 2000).

Single photon emission computed tomography (SPECT)
and positron emission tomography (PET) studies in
humans have provided evidence that non-competitive
glutamate NMDA receptor antagonists, such as ketamine,
increase amphetamine-induced dopamine release (Kegeles
et al, 2000), and decrease D2/3 binding in the posterior
cingulate cortex (Aalto et al, 2005) and striatum (Breier
et al, 1998; Smith et al, 1998; Vollenweider et al, 2000).
Other studies though have not supported this finding in the
striatum (Aalto et al, 2002; Kegeles et al, 2002).

Recent developments in proton magnetic resonance
spectroscopy (1H-MRS) permit the in vivo study of the
glutamatergic system (Di Costanzo et al, 2003; Abbott and
Bustillo, 2006; Di Costanzo et al, 2007).

We therefore used 1H-MRS to compare the glutamate
levels in antipsychotic-naı̈ve subjects with prodromal
symptoms, antipsychotic-naı̈ve patients with a first episode
of psychosis and sex-and-age similar healthy controls. We
selected two regions of interest for our analysis: the
precommissural dorsal caudate, which is characterized by
a high density of dopamine receptors and dopamine
afferents, and the cerebellum, a brain region with negligible
quantity of dopamine receptors and absence of dopamine
afferents. It was recently shown that both patients with
schizophrenia and prodromal subjects have higher dopa-
mine levels in the associative striatum (Howes et al, 2009b;
Kegeles et al, 2010), of which the precommissural dorsal
caudate (henceforth, dorsal caudate) is the main component
(Mawlawi et al, 2001). Our hypothesis was that subjects with

prodromal symptoms and patients with a first episode of
psychosis would show higher glutamate than controls in the
dorsal caudate as measured by 1H-MRS, and no differences
of glutamate between groups in the cerebellum.

MATERIALS AND METHODS

Clinical Sample

The study was approved by the Ethics and Scientific
Committees of the National Institute of Neurology and
Neurosurgery of Mexico (INNN). All the subjects were
included following successful completion of an informed
consent procedure, and with written consent of both
parents for subjects under 18 years old.

Eighteen subjects with ultra high-risk for schizophrenia–
or prodromal symptoms (UHR), and 18 patients during
their first non-affective psychotic episode (FEP) were
recruited from the inpatient psychiatric service, first
psychotic episode clinic, and the Adolescent Program of
Neuropsychiatric and Imaging Study (PIENSA) of the
INNN. All subjects were interviewed using the structured
clinical interview for DSM-IV (First et al, 1997) and the
UHR group met Structured Interview for Prodromal
Syndromes (SIPS) criteria (Miller et al, 2003) for study
entry. Both groups were antipsychotic naı̈ve, and were
capable to grant informed consent. Patients were excluded if
they had the following: any concomitant medical or
neurological illness, current substance abuse or history of
substance dependence (excluding nicotine), comorbidity of
any other axis I disorders, were considered to be at high
risk for suicide, or show psychomotor agitation. Use of
psychotropic medications was not permitted for the
duration of the study. Forty right-handed age- and
gender-matched healthy controls were also recruited.
The control subjects were assessed in the same manner as
the patients and any subject with a history of psychiatric
illness or positive familiar history for schizophrenia was
excluded. All participants were screened for drugs of abuse
(eg, cannabis, cocaine, heroin, opioids and benzodiaze-
pines) before the 1H-MRS studies.

Magnetic Resonance Studies

The 1H-MRS studies were performed in a 3T GE (GE
Healthcare, Milwaukee, WI) whole-body scanner with a
high-resolution 8-channel head coil (Invivo, Orlando, FL).
The participant’s head was positioned along the cantho-
meatal line and immobilized by means of a forehead strap.
1H-MRS spectra were obtained using point-resolved spec-
troscopy (PRESS; TE¼ 35 ms, TR¼ 2000 ms, spectral
width¼ 5000 Hz, 4096 data points used, 128 water-sup-
pressed, and 16 water-unsuppressed averages) in volume
elements (voxels) of 8 ml (2� 2� 2 cm) centered in the right
dorsal caudate nucleus and right cerebellar cortex in all
studied subjects. This acquisition allowed for the quantifi-
cation of glutamate (Glu), N-acetyl-aspartate (NAA),
creatine (Cr), phosphocreatine (PCr), glycerophosphocho-
line (GPC), phosphocholine (PCh), and myo-inositol (mI).

The spectra were shimmed to achieve full width at half
maximum (FWHM) p12 Hz (measured on the unsup-
pressed water signal from the voxel), and spectra with larger
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FWHM were excluded. The voxels were defined in a T1

weighed volumetric image in axial projection (SPGR,
TE¼ 5.7 ms, TR¼ 13.4 ms, TI¼ 450 ms, flip angle¼ 201,
FOV¼ 25.6 cm, 256� 256 matrix, slice thickness¼ 1.2 mm)
and oriented above and parallel to the anterior (AC) to the
posterior commissure (PC).

The lower end of the dorsal caudate (or associative-
striatum) voxel was located 3 mm dorsal to the AC,
including the maximum amount of gray matter and with a
dorsal extension (thickness) of 2 cm. The cerebellar voxel
was located in the cerebellar cortex below the inferior
cerebellar peduncle avoiding the midline (Figure 1). All
spectra were analyzed with the Linear Combination
Model included in the LCModel program, version 6.2-1T
(Provencher, 1993). The metabolites included in the basis
set were as follows: L-alanine (Ala), aspartate (Asp), Cr,
g-aminobutyric acid (GABA), glucose (Glc), glutamine
(Gln), Glu, GPC, PCh, L-lactate (Lac), mI, NAA,
N- acetylaspartylglutamate acid (NAAG), Scyllo-inositol
(Scyllo), taurine (Tau), Cr methylene group (–CrCH2),
guanidinoacetate (Gua), GPC + PCh, NAA + NAAG, Glu +
Gln, lipids (Lip), and macromolecules (MM): Lip13a, Lip13b,
Lip09, MM09, Lip20, MM20, MM12, MM14, MM17, Lip13a +
Lip13b, MM14 + Lip13a + Lip13b + MM12, MM09 + Lip09,
and MM20 + Lip20. All metabolites with Cramer-Rao low-
er-bound 420% reported by LCModel were excluded.

SPGR scans used for localization of the voxels were
subsequently segmented into gray matter, white matter, and
cerebrospinal fluid (CSF) using Statistical Parametric
Mapping 8 (Friston et al, 1995) (SPM8, Wellcome Depart-
ment of Cognitive Neurology, London; http://www.fil.ion.
ucl.ac.uk/spm). Then, the size and location of each area
from the spectra file headers were extracted to calculate the
percentage of gray, white, and CSF content within the voxel,
allowing for correction of the CSF fraction of the spectro-
scopic values. CSF correction assumed zero metabolite
concentration in the CSF using the equation SVcorr¼ SV/
(1�CSF), where SV are the spectroscopic values, CSF is the
CSF fraction within the voxel and SVcorr are the corrected
spectroscopic values.

Statistical Analysis

The results are presented in means and standard deviations
(±SD). Statistical analyses were performed using SPSS
v16.0 software (SPSS, Chicago, IL). Demographic and
clinical characteristics of the sample were compared

between controls, FEP, and UHR groups with analysis of
variance (ANOVA), with the exception of frequency data.
Frequency data were analyzed using w2 or Fisher’s exact
tests. Metabolite measures between groups were compared
using a general linear model (GLM). The percentages of
gray matter in the dorsal caudate and cerebellum, as well as
age were included as covariates in the GLM. On the basis of
significant main effects per metabolite and region, post hoc
comparisons with Bonferroni correction were performed.
The statistical comparisons were carried out at a signifi-
cance level set at po0.05.

Partial Spearman correlations controlling for the effect of
gray matter were conducted to examine the relationship
between clinical scales and Glu concentration for each
region. Spearman correlations (non-parametric) rather than
Pearson coefficients were used due to the relatively small
sample size. The statistical threshold was established with
pp 0.05 to control for multiple comparisons, p¼ 0.05/4
clinical scales for UHR group (SIPS positive, negative,
disorganization, general), and p¼ 0.05/3 clinical scales for
FEP (PANSS positive, negative, and general).

RESULTS

Demographic and Clinical Characteristics

The UHR group was younger than the FEP (F[2,73]¼ 3.60,
p¼ 0.03), but both groups did not differ from controls.
Education was higher in controls compared with FEP and
UHR groups (F[2,73] ¼ 9.59, po0.001). One subject in the
UHR and two in the FEP groups previously used cannabis
(Fisher’s exact test¼ 6.12, p¼ 0.03). Four subjects in the
UHR group were taking a selective serotonin reuptake
inhibitor (two fluoxetine, one paroxetine, one sertraline) at
the time of the study (Fisher’s exact test¼ 9.26, p¼ 0.005).
UHR and FEP groups did not differ in gender, handedness,
or tobacco use compared with controls (see Table 1).

Cerebral Metabolites

There was a significant difference in Glu levels in the dorsal
caudate between groups (F[2,73] ¼ 5.99, p¼ 0.004). Post hoc
tests revealed higher Glu in both UHR and FEP groups than
controls (p¼ 0.04 and p¼ 0.01, respectively), with no
statistical difference between FEP and UHR groups
(p¼ 0.64). On the contrary, cerebellar Glu concentrations
did not differ significantly between the three groups

Figure 1 Spectroscopic voxel placement in right dorsal caudate and right cerebellum and representative spectra for each region. Glu, glutamate; Gln,
glutamine; NAA, N-acetylaspartate.
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(F[2,73] ¼ 1.41, p¼ 0.25) (Figure 2). Glutamine (Gln) was not
analyzed due to poor spectra fitting in the caudate (number
of spectra rejected in controls¼ 37, UHR¼ 18, and
FEP¼ 17) and the cerebellum (number of spectra rejected
in controls¼ 40, UHR¼ 18, and FEP¼ 18).

NAA levels in the dorsal caudate were higher among
patient groups (F[2,73] ¼ 6.72, p¼ 0.002), with higher NAA in
the UHR group compared with controls (p¼ 0.002).
Although NAA was also higher in the FEP group, this
finding did not survive correction for multiple comparisons

(Table 2). We also found a difference in NAA concentration
between groups in the cerebellum (F[2,73] ¼ 7.65, p¼ 0.001),
with higher NAA in the FEP group vs both controls
(p¼ 0.003) and the UHR group (p¼ 0.001).

GPC + PCh concentrations, for which we had no a priori
hypotheses, in the dorsal caudate and cerebellum were
different between groups (F[2,73]¼ 7.57, p¼ 0.001 and
F[2,73] ¼ 4.03, p¼ 0.02, respectively), with higher GPC +
PCh in the FEP group compared with controls in the dorsal
caudate (p¼ 0.002), as well as the cerebellum (p¼ 0.03).

No differences in Glu + Gln were found between groups in
dorsal caudate (F[2,73]¼ 2.11, p¼ 0.13). Although an effect
was found in Glu + Gln in the cerebellum (F[2,73] ¼ 3.39,
p¼ 0.04), post hoc analysis did not show any differences
between groups.

The results of metabolite comparisons did not change
when age was included as a covariate (data not shown). No
significant correlations were found in the dorsal caudate or
cerebellum between any clinical measure in UHR or FEP
groups and all the metabolites concentrations.

The percentages of gray matter in the dorsal caudate and
cerebellum were different between the three groups
(F[2,73] ¼ 3.44, p¼ 0.04, F[2,73]¼ 9.38, p¼ 0.001, respec-
tively). The post hoc analysis showed that the gray matter
in the dorsal caudate was lower in the UHR group than in
FEP (p¼ 0.03). The gray matter in the cerebellum was lower
in the FEP in comparison with controls (p¼ 0.002) and with
UHR (p¼ 0.001). Besides the differences of the percentage
of gray matter found in dorsal caudate and cerebellum
between the groups, the results of metabolites comparisons
did not change whether or not the percentages of gray
matter were included as a covariate (data not shown).

Glu and NAA levels were correlated in the caudate and
cerebellum of all participants (r¼ 0.77, pp0.001 and
r¼ 0.71, pp0.001, respectively). Moreover, Glu and NAA

Table 1 Demographic and Clinical Characteristics of the Sample

Control subjects UHR FEP Statistic

Age (±SD) years 21.83±4.47 19.56±3.46 23.44±4.93a F[2,73]¼ 3.60, p¼ 0.03

Gender (male/female) 28/12 14/4 10/8 Fisher’s¼ 2.09 NS

Education (±SD) years 14.47±3.32 10.67±2.61b 12.11±3.51b F[2,73]¼ 9.60, po0.001

Handedness (right/left) 40/0 18/0 18/0 NS

Length of illness (±SD) weeks NA 16.56±12.28 18.72±18.14 NS

Tobacco (ever used) 9/40 1/18 6/18 Fisher’s¼ 4.32 NS

Cannabis (ever used) 0/40 1/18 2/18 Fisher’s¼ 6.12, p¼ 0.03

Use of antipsychotic treatment 0/40 0/18 0/18 NS

Use of SSRIs 0/40 4/18 0/18 Fisher’s¼ 9.26, p¼ 0.005

PANSS positive symptoms 22.17±3.94

PANSS negative symptoms 26.72±6.87

PANSS general symptoms 51.44±15.23

SIPS positive symptoms 12.72±3.95

SIPS negative symptoms 17.94±5.73

SIPS disorganization symptoms 9.28 ±3.14

SIPS general symptoms 8.94±3.55

Abbreviations: NA, not applicable; NS, not significant; SSRIs, selective serotonin reuptake inhibitors.
Significant post hoc pair-wise comparisons with Bonferroni correction (po0.05) are indicated: avs UHR; bvs controls

Figure 2 Glutamate (Glu) levels of each participant in the dorsal caudate
and cerebellum of controls, ultra high-risk for schizophrenia (UHR), and first
episode-psychosis patients (FEP). Bars represent the mean for that group.
*vs control, po0.05.
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levels were correlated in the caudate of controls (r¼ 0.70,
pp0.001), UHR (r¼ 0.74, pp0.001), and FEP groups
(r¼ 0.78, pp0.001), and the cerebellum of controls
(r¼ 0.81, pp0.001), UHR (r¼ 0.56, p¼ 0.01), and FEP
groups (r¼ 0.64, p¼ 0.002) (Figure 3).

DISCUSSION

Summary of Main Results

Our results confirmed our hypothesis that subjects with
prodromal symptoms of schizophrenia and unmedicated
subjects experiencing a first episode of psychosis, have
increased Glu in the dorsal caudate but not in the

cerebellum. The absence of differences in the cerebellum
suggests that the alterations in Glu in subjects with
psychotic and pre-psychotic symptoms are not ubiquitous
within the brain, and that the differences may be restricted
to brain dopamine-rich regions such as the associative
striatum, a region thought to be involved in the pathophy-
siology of schizophrenia (Howes et al, 2009b; Kegeles et al,
2010).

The associative striatum (or cognitive striatum) (Mawlawi
et al, 2001) includes the rostral and dorsal part of the
caudate nuclei or precommissural dorsal section, also
known as neostriatum (Brodal, 2004). This structure is rich
in dopamine afferents and D2 receptors, and is frequently
included in the quantification of in vivo occupancy of

Table 2 Means (±SD) for Each Metabolite in Dorsal Caudate and Cerebellum

Region
Dorsal caudate

Statistic
Cerebellum

Statistic

Group Control UHR FEP Control UHR FEP

Metabolite

Glu 24.08±3.16 27.54±4.67a 27.79±4.29a F[2,73]¼ 5.99 20.25±3.01 19.78±2.13 22.94±4.57 F[2,73]¼ 1.41

n¼ 40 n¼ 18 n¼ 18 p¼ 0.004 n¼ 40 n¼ 18 n¼ 18 p¼ 0.25

Glu+Gln 32.47±3.48 34.26±5.13 35.38±5.13 F[2,73]¼ 2.11 25.54±5.06 25.16±5.18 29.34±5.51 F[2,73]¼ 3.39

n¼ 40 n¼ 18 n¼ 18 p¼ 0.13 n¼ 40 n¼ 18 n¼ 18 p¼ 0.04

NAA 21.45±2.30 24.69±2.52a 23.09±3.02 F[2,73]¼ 6.72 15.45±2.75 14.56±2.07 19.03±3.94a,b F[2,73]¼ 7.65

n¼ 40 n¼ 18 n¼ 18 p¼ 0.002 n¼ 40 n¼ 18 n¼ 18 p¼ 0.001

GPC+PCh 4.24±3.22 4.65±0.28 4.89±0.70a F[2,73]¼ 7.57 4.63±0.83 4.57±0.42 5.43±1.13a F[2,73]¼ 4.03

n¼ 40 n¼ 18 n¼ 18 p¼ 0.001 n¼ 40 n¼ 18 n¼ 18 p¼ 0.02

mI 9.01±1.87 8.87±1.72 10.14±1.21 F[2,73]¼ 3.11 14.68±2.43 12.81±1.71 14.46±2.66 F[2,73]¼ 3.01

n¼ 39 n¼ 18 n¼ 18 p¼ 0.05 n¼ 40 n¼ 18 n¼ 18 p¼ 0.06

Cr+PCr 17.35±1.83 18.22±2.14 18.69±3.02 F[2,73]¼ 2.11 19.76±3.03 18.30±2.19 20.06±3.19 F[2,73]¼ 1.43

n¼ 40 n¼ 18 n¼ 18 p¼ 0.13 n¼ 40 n¼ 18 n¼ 18 p¼ 0.25

Abbreviations: Cr, creatine; FEP, first episode of psychosis group; Gln, glutamine; Glu, glutamate; GPC, glycerophosphocholine; mI, myo-inositol; n, number of spectra
analyzed; NAA, N-acetyl-aspartate; PCh, phosphocholine; PCr, phosphocreatine; UHR, ultra high-risk for schizophrenia group.
Significant post hoc pair-wise comparisons with Bonferroni correction (po0.05) are indicated: avs controls; bvs UHR.

Figure 3 Correlation between glutamate (Glu) and N-acetylaspartate (NAA) in the dorsal caudate and cerebellum of the participants. Dorsal caudate:
Pearson’s r¼ 0.70, pp0.001 in controls, Pearson’s r¼ 0.74, pp0.001 in ultra high-risk for schizophrenia (UHR), Pearson’s r¼ 0.78, pp0.001 in first episode-
psychosis patients (FEP). Cerebellum: Pearson’s r¼ 0.81, pp0.001 in controls, Pearson’s r¼ 0.56, p¼ 0.01 in UHR, Pearson’s r¼ 0.64, p¼ 0.002 in FEP.
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antipsychotics (Farde et al, 1988; Graff-Guerrero et al,
2008). In addition, the associative striatum establishes
major connections with the frontal lobe (Lehericy et al,
2004). The frontal cortex has been implicated in the
neurocognitive deficits seen in schizophrenia (Villalta-Gil
et al, 2006), deficits which are also present in subjects with
prodromal symptoms and FEP patients (Cadenhead, 2002;
Jahshan et al, 2010).

The associative striatum, and especially the precommis-
sural dorsal caudate, has shown the highest D2 receptor
availability after acute pharmacologically induced dopa-
mine depletion in antipsychotic-free patients with schizo-
phrenia (Kegeles et al, 2010). In this same study, no
differences in receptor availability were seen in the other
functional subdivisions of the striatum (limbic and
sensorimotor striatum), suggesting that schizophrenia is
associated with elevated dopamine function in associative
regions of the striatum. Moreover, UHR subjects had
elevated DOPA decarboxylase activity in this same func-
tional region, suggesting that the subcortical dopamine
synthesis is enhanced before the expression of psychosis
(Howes et al, 2009b).

Although our main interest was to explore the differences
in Glu associated with a dopamine rich region, we included
the cerebellar cortex for comparison. The cerebellar cortex
has a negligible amount of dopamine receptors and has no
dopamine afferents (De Keyser et al, 1988; Camps et al,
1989). On the other hand, both the dorsal caudate and the
cerebellar cortex are abundant in glutamatergic cells
(Brodal, 2004) and cortical afferents from the frontal
cortex (Schmahmann and Pandya, 1995; Middleton and
Strick, 2001; Dum and Strick, 2003; Kelly and Strick, 2003).
In this sense, one of the differences between the dorsal
caudate and the cerebellum are the dopaminergic afferents,
which are restricted to the dorsal caudate. Although it is
tempting to speculate that some differences observed in the
Glu in the dorsal caudate may be related to the dopami-
nergic tone, our study was not designed to address this
question. Although, in agreement with our results, pre-
clinical studies have shown that elevation in striatal
endogenous Glu induces an increase in striatal dopamine
release (Segovia et al, 1997). Preliminary results from our
group (de la Fuente-Sandoval et al, 2009) have shown that
patients with schizophrenia during an acute psychotic
episode and after 6 weeks of antipsychotic treatment
presented with higher Glu levels in the dorsal caudate
compared with controls, and with no differences in the
cerebellum. These data suggest that higher Glu levels are a
stable finding in the dorsal caudate regardless of treatment.
However, we acknowledge that to confirm the association
between higher Glu with dopamine, a direct measure
of both Glu and dopamine should be performed in the
same subject.

Glutamate-Dopamine Interaction and Schizophrenia

Abnormal interaction between Glu and dopamine neuro-
transmission systems has been shown in preclinical model
of schizophrenia (Grace, 2000). In addition, using SPECT in
normal controls, Kegeles et al. (Kegeles et al, 2000)
demonstrated that ketamine administration enhanced an
increase in amphetamine-induced dopamine release. In a

PET study, ketamine administration resulted in a decrease
in striatal [11C]-raclopride binding, reflecting an increase on
striatal synaptic dopamine. Moreover, this decrease in
[11C]-raclopride binding was similar to the decrease shown
after amphetamine administration (Breier et al, 1998).
Others (Smith et al, 1998; Vollenweider et al, 2000; Aalto
et al, 2005) have also documented this interaction,
concluding that glutamatergic antagonism is associated to
an increase of dopamine release in the cerebral cortex and
the striatum, and inducing positive and negative symptoms
similar to those observed in schizophrenia. In addition,
NMDA-receptor blockade in healthy humans has been
shown to increase Gln levels in the anterior cingulate as
measured by 1H-MRS (Rowland et al, 2005).

Glu system dysfunction has been suggested to have a role
in schizophrenia (Carlsson and Carlsson, 1990; Javitt and
Zukin, 1991; Olney and Farber, 1995). Uncompetitive
NMDA receptor antagonists, such as phencyclidine (PCP)
and ketamine, induce the full range of positive and
negative psychotic symptoms observed in schizophrenia
patients (Javitt, 2007). In rats, ketamine administration
produced an increase in glutamate release in prefrontal
cortex (Moghaddam et al, 1997).

The results of this study, which show higher Glu levels in
subjects with pre-psychotic and psychotic symptoms in the
dorsal caudate, a brain region previously associated with
enhanced dopaminergic transmission in schizophrenia, are
consistent with our hypothesis. However, it is important to
note that direct measurement of Glu neurotransmission is
not possible with 1H-MRS. This technique measures both
metabolic and vesicular Glu. A summary of findings from
previous studies that measured Glu are presented in Table 3.
The reasons for the discrepant findings between studies are
unclear; nevertheless, our study illustrates, using a within
subject design, that Glu levels are elevated in the dorsal
caudate in comparison with the cerebellum.

Glutamate and Neuronal Degeneration

Excessive glutamatergic activity is also associated with
neuronal degeneration (Olney et al, 1989). Our study
revealed a lower percentage of gray matter in caudate
voxels of UHR participants, which may be secondary to
excessive glutamate levels. Other studies have also reported
a decrease in gray matter in UHR subjects in a variety of
other brain regions, including the right medial temporal,
lateral temporal, orbitofrontal and cingulate cortex, insula,
and inferior frontal and superior temporal gyrus (Pantelis
et al, 2003; Borgwardt et al, 2007; Stone et al, 2009). Other
factors, however, may have also contributed to our finding
of reduced gray matter as a lower percentage of gray matter
was not observed in FEP patients. Moreover, our study was
not intended to compare gray matter differences between
regions, which were principally included in this study as a
covariate. As noted above, no differences were seen in the
metabolites results whether or not we included this measure
as a covariate. Interestingly, we found a decrease in
cerebellar gray matter of the FEP group compared with
UHR subjects and controls. This finding agrees with
previous studies of FEP, drug-naı̈ve patients (Jayakumar
et al, 2005; Chua et al, 2007).
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Other Metabolites

Our results indicate that Glu levels are significantly
correlated with NAA in the caudate and cerebellum in all
comparison groups. NAA, one of the prominent peaks
consistently shown in 1H-MRS, is present almost exclusively
in neurons and is thought to be a marker of neuronal
functional integrity (Barker, 2001) and axonal mitochon-
drial metabolism (Bates et al, 1996). Higher NAA levels may
be driven by increased axonal mitochondrial metabolism to
maintain axonal conduction (Ariyannur et al, 2008). It is
not surprising then that an increase in Glu, an excitatory
neurotransmitter, would be associated with an increase in
local neuronal metabolism.

We report higher NAA in the cerebellum of FEP patients
compared with both controls and UHR subjects. This is
inconsistent with the findings of a recent meta-analysis,
(Steen et al, 2005) which found no difference in NAA levels
between patients with schizophrenia and controls. Another
study of early schizophrenia patients with minimal anti-
psychotic exposure also found no differences in the
cerebellum compared with controls (Bustillo et al, 2008).
The reasons for these discrepant findings are unclear, but
may be related to the clinical status of patients, previous
exposure to antipsychotic medication, spectroscopic acqui-
sition (single-voxel vs chemical shift imaging and varying
echo time), and the use of ratios (NAA to Cre or Cho) vs
metabolite concentrations. Future replication studies are
necessary to shed light on these discrepant findings.

Elevated choline containing compounds levels (repre-
sented collectively as GPC + PCh) have been interpreted as

supportive of the ‘membrane hypothesis’ of schizophrenia
(Horrobin et al, 1994), suggesting that phospholipid
disturbances and an increased myelin degradation supports
a generalized membrane disorder in patients with schizo-
phrenia (Auer et al, 2001). Our results in elevated choline
containing compounds (GPC + PCh) found in the dorsal
caudate of FEP patients agrees with previous reports in
patients with schizophrenia (Bustillo et al, 2002; Lutkenhoff
et al, 2010), and in childhood-onset schizophrenia (O’Neill
et al, 2004). Three previous reports have failed to find
differences in choline in the cerebellum of patients with
schizophrenia (Eluri et al, 1998; Tibbo et al, 2000; Bustillo
et al, 2008).

Glycerophosphocholine is one the main products of
membrane phospholipid breakdown. The observed increase
in the FEP group but not in the UHR suggests increased
membrane turnover that occurs after a switch to FEP, and
may result from changes in membrane mass or proliferation
of dendrites and synaptic connections in these regions
(Stanley et al, 2006).

Limitations

Limitations of this study need to be considered. First, we
did not include cognitive evaluations: we therefore could
not address the possibility of an effect of cognition
associated with Glu levels. Second, the groups could not
be matched for education; education was greater in controls
than in FEP and UHR. Parental education and socio-
economic status were not collected but would be better
variables for subject matching given that the subjects

Table 3 Summary of Glutamate 1H-MRS Studies

Author (year) Tesla Studied group Medication status Brain region Glutamate results

Bartha et al, 1997 1.5 Schizophrenia Antipsychotic-naı̈ve Medial prefrontal cortex No differences

Théberge et al, 2002 4 Schizophrenia Antipsychotic-naı̈ve Anterior cingulate
thalamus

No differences

Théberge et al, 2003 4 Schizophrenia Antipsychotic treated Anterior cingulate Decreased

Tibbo et al, 2004 3 High genetic risk for schizophrenia Unmedicated Medial prefrontal cortex Glu/Gln increased

Ohrmann et al, 2005 1.5 Schizophrenia Antipsychotic treated Dorsolateral prefrontal
cortex

Glu/Gln increased

van Elst et al, 2005 2 Schizophrenia Antipsychotic treated Dorsolateral prefrontal
cortex hippocampus

Increased

Théberge et al, 2007 4 First-episode schizophrenia Antipsychotic-naı̈ve Anterior cingulate
thalamus

No differences

Olbrich et al, 2008 2 Schizophrenia 60% antipsychotic treated Dorsolateral prefrontal
cortex

Increased

Purdon et al, 2008 3 High genetic risk for schizophrenia Unmedicated Medial prefrontal cortex Increased

Keshavan et al, 2009 1.5 High genetic risk for schizophrenia Unmedicated Inferior parietal/occipital
cortex

Glu+Gln increased

Stone et al, 2009 3 Prodromal 18% Antipsychotic treated Thalamus Decreased

Lutkenhoff et al, 2010 3 Discordant twins for schizophrenia Antipsychotic treated Medial prefrontal cortex Decreased

Bustillo et al, 2010 4 Schizophrenia Minimally treated Anterior cingulate Gln/Glu increased

Stone et al, 2010 3 Prodromal Unreported Hippocampus Decreased

Wood et al, 2010 3 Prodromal Antipsychotic-naı̈ve Hippocampus No differences

Abbreviations: Gln, glutamine; Glu, glutamate.
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groups were young and became ill before reaching full
educational potential. Third, the spectroscopic voxels
involved functionally dissimilar areas and included different
proportions of CSF, gray and white matter, making
interpretations regarding tissue specificity problematic.
We tried to minimize this limitation by correcting for CSF
proportion and using the gray matter as a covariate.
Although we found differences in dorsal caudate and
cerebellum gray matter percentage between the groups,
this did not change the results. Fourth, altered NAAG has
been described in schizophrenia. Although NAAG could
contribute to the quantification of NAA, it could not be
differentiated in a reliable way with the methodology
employed in our study (Lutkenhoff et al, 2010). Specific
techniques to measure NAAG (Edden et al, 2007) could be
used in future studies. Fifth, Glu-Gln contamination of the
NAA peak has been observed at short echo times, including
the one used in this study (TE¼ 35 ms) (Clementi et al,
2005). Thus, this could be reflected as an artificial increase
of NAA when Glu is increased. However, this is unlikely as
at least the dorsal caudate of FEP showed higher Glu with no
difference in NAA levels. Further studies using specific
techniques to measure Glu, such as multiple echo times
(Zhang et al, 2007), TE-averaged PRESS (Hurd et al, 2004),
or constant time PRESS (Mayer and Spielman, 2005) are
needed.

Summary

Our results indicate an increase in Glu in the dorsal caudate
of antipsychotic naı̈ve subjects with prodromal symptoms
of schizophrenia and at a FEP, but not in the cerebellum.
Due to the heterogeneity of outcomes in the UHR
population, further longitudinal studies are needed to
determine the true difference of Glu of those subjects that
will convert to psychosis. Replication of our results and the
results of longitudinal studies could help to develop a better
prediction algorithm for those subjects that will develop a
primary psychotic disorder.
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