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The present study investigated the role of the a1-containing GABAA receptors in the neurobehavioral actions of alcohol. In Experiment

1, mice lacking the a1 subunit (a1 (�/�)) were tested for their capacity to initiate operant-lever press responding for alcohol or sucrose.

Alcohol intake in the home cage was also measured. In Experiment 2, the a1 (�/�) mice were injected with a range of alcohol doses

(0.875–4.0 g/kg; i.p.) to evaluate the significance of the a1 subunit in alcohol’s stimulant actions. In Experiment 3, we determined if the

alcohol-induced stimulant effects were regulated via dopaminergic (DA) or benzodiazepine (BDZ)-dependent mechanisms. To

accomplish this, we investigated the capacity of DA (eticlopride, SCH 23390) and BDZ (flumazenil, bCCt) receptor antagonists to

attenuate the alcohol-induced stimulant actions. Compared with wild-type mice (a1 ( + / + )), the null mutants showed marked

reductions in both EtOH and sucrose-maintained responding, and home-cage alcohol drinking. The null mutants also showed significant

increases in locomotor behaviors after injections of low–moderate alcohol doses (1.75–3.0 g/kg). bCCt, flumazenil, eticlopride, and SCH

23390 were able to attenuate the alcohol-induced stimulation in mutant mice, in the absence of intrinsic effects. These data suggest the

a1 receptor plays an important role in alcohol-motivated behaviors; however, it also appears crucial in regulating the reinforcing

properties associated with normal ingestive behaviors. Deleting the a1 subunit of the GABAA receptor appears to unmask alcohol’s

stimulatory effects; these effects appear to be regulated via an interaction of both DA- and GABAA BDZ-dependent mechanisms.
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INTRODUCTION

A number of in vitro (Criswell et al, 1993, 1995; Duncan
et al, 1995) and in vivo (Harvey et al, 2002; June et al, 2003)
studies employing a1 ‘efficacy’ (eg, zolpidem, CL 218, 872;
see Griebel et al, 1999), and ‘binding’ (eg, zolpidem, bCCt,
3-PBC; see June et al, 2003) selective ligands suggest the
a1-containing GABAA receptors of the ventral pallidum
(VP) play an important role in regulating alcohol’s neuro-

behavioral effects, particularly, alcohol’s reinforcing proper-
ties. Similar to the a1-selective ligands, the a1-null mutant
mice provide researchers the opportunity to investigate the
significance of the a1 receptor subunit in regulating
alcohol’s neurobehavioral effects. Developed in two separate
laboratories using different gene-targeting methods (Sur
et al, 2001; Vicini et al, 2001), the a1 (�/�) mice have been
reported to have a 50–60% loss in total GABA/BDZ receptor
number (Sur et al, 2001; Vicini et al, 2001), and a
compensatory increase in GABAA receptor a2 and a3
subunit peptide expression (37–39%) (Vicini et al, 2001)
and immunoprecipitation (45–57%) (Sur et al, 2001). In
addition to the above, it should be noted that other
differences and similarities exists among the two different
mice populations. Specifically, both knockout mouse lines
were created by gene-targeting and embryonic stem cell
technologies. Exon 4 of the Sur et al (2001) mice was
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replaced with a neo cassette that remains in the a1 locus,
while the mice of Vicini et al (2001) lack exon 8 and harbor
no marker cassette in the targeted locus. The mice of Sur
et al (2001) were maintained as separate wild-type and
knockout mouse lines by breeding mice of the same
genotype. In contrast, the mice of Vicini et al (2001) were
always maintained by interbreeding of heterozygotes.
Lastly, the mice of Sur et al (2001) were of a mixed
C57BL/6J� Strain 129/SvEv genetic background and those
of Vicini et al (2001) were of a C57BL/6J� Strain 129Sv/
SvJ� FVB/N background. However, despite some of the
above differences, both lines display similar changes in
GABAA receptor pharmacology, and an absence of any
‘overt’ behavioral differences (Sur et al, 2001; Vicini et al,
2001; Kralic et al, 2002a, b).
Recent work by Blednov et al (2003a, b) have investigated

a number of alcohol’s responses in the a1-null mutant mice.
Specifically, Blednov et al (2003b) demonstrated that the a1
mutants consumed decreased amounts of alcohol and
saccharin in the home cage. In contrast, Blednov et al
(2003b) reported no differences between the mutants and a1
( + / + ) mice in a conditioned place preference (CPP)
paradigm. These discrepant results are likely due to the
different paradigms assessing different reinforcing proper-
ties associated with alcohol. In addition, germane to
alcohol’s reinforcing properties, the a1 (�/�) mice have
also been used to investigate alcohol’s locomotor stimulant
actions. Both developing laboratories report that alcohol
(0.5–2.5 g/kg) enhances locomotor behavior in the a1 (�/�)
mice (Kralic et al, 2003; Blednov et al, 2003b), while the a1
( + / + ) mice were generally unaffected, or very weakly
stimulated (Blednov et al, 2003b). The sedative actions of
alcohol, however, were not investigated in either study.
Nevertheless, both studies suggested that the GABA a1
receptor was important in alcohol’s stimulant actions.
Additional studies are warranted, however, to more

precisely define the exact role the a1 subunit plays in
regulating alcohol’s neurobehavioral properties. For exam-
ple, Roberts et al (2000) contend employing the home cage
as the only reinforcing model that ‘is potentially con-
founded by palatability’ (also see June, 2002). Further, as in
studies of other abused drugs, the optimal instrument to
assess reward efficacy is the operant chamber where the
contingency between responding and drinking can be
specified and the volume of liquid ingested per completed
schedule can be controlled (see June et al, 2002). Second,
when the 24 h access model is employed as in the Blednov
et al, study (2003b), it is difficult to determine pharmaco-
logically relevant blood alcohol concentrations (BAC), since
the scheduled drinking bout(s) is often difficult to ascertain.
BACs are important when trying to determine EtOH’s
neuromechanism of action (Crabbe et al, 1982; Frye and
Breese, 1981; Lister, 1987). Third, while low–moderate doses
of EtOH (0.50–2.5 g/kg) were used in the previous work
(Blednov et al, 2003b; Kralic et al, 2003), it is possible that
stimulation could be detected at higher doses (eg, 3.0–4.0 g/
kg) (see Cohen et al, 1997), since the null mutants seem
highly sensitive to alcohol motor-stimulating effects, and
resistant to alcohol’s sedative actions (Blednov et al, 2003b).
In addition, higher doses may permit investigation of the a1
receptor in alcohol’s sedative actions. Finally, it is possible
that low–moderate EtOH doses may activate different

GABAA receptor subunits and different brain loci compared
with higher doses (see Homanics et al, 1997; Tauber et al,
2003).
While the direct reinforcing actions of alcohol have been

investigated in the operant chamber (June, 2002), alcohol’s
acute reinforcing actions, as with other abused drugs (Di
Chiara and Imperato, 1985), have also been indirectly
inferred/investigated via the use of locomotor activational
effects (Wise and Bozarth, 1987; Koob and Bloom, 1988;
Phillips et al, 1998). In general, these studies have
hypothesized that the locomotor activational effects in mice
may be a putative model of alcohol-induced euphoria in
humans (Lukas and Mendelson, 1988; Phillips and Shen,
1996; Phillips et al, 1998). These studies have suggested the
mesoaccumbens-pallidal circuitry mediate alcohol’s stimu-
lant actions (see Shen et al, 1998). This circuitry comprises
dopaminergic neurons that project from the VTA to nucleus
accumbens (NAC) where they form connections with
neurons possessing GABAA receptors in the VP. It is well
established that GABAergic neurons form a dense reciprocal
connection between the NAC and VP (for a review, see
Churchill and Kalivas, 1994). Thus, given the above
neuroanatomical connectivity between the DA and GABAA

systems, and a plethora of both immunohistochemical and
in situ hybridization studies confirming the preponderance
of mRNA encoding the a1 receptor within the VP (see June
et al, 2003), it is possible that both dopaminergic and
GABAergic mechanisms may play a significant role in the
alcohol stimulant actions in the a1-null mutants.
Thus, in the present study, we first tested the hypothesis

that the a1 receptor subunit selectively regulated alcohol-
motivated behaviors. Secondly, we determined if the ability
of alcohol to produce activational effects in the a1 (�/�)
mice were regulated via DA, or benzodiazepine (BDZ)-
dependent mechanisms. To accomplish this, we evaluated
the capacity of DA (eg, eticlopride, SCH 23390) and BDZ
(eg, flumazenil, bCCt) antagonists to attenuate the alcohol-
induced stimulant actions. The BDZ component of the
GABAA receptor complex was the focus of this study, since
Shen et al (1998) suggested ‘little evidence’ supported a role
for the GABAA receptor in mediating the alcohol activa-
tional effects in mice highly sensitive to alcohol stimulation
using GABA antagonists (eg, bicuculline or picrotoxin).

MATERIALS AND METHODS

Experiment 1

EtOH and sucrose self-administration paradigms.
Subjects: After weaning, male and female GABAA a1

(�/�) and a1( + / + ) mice were obtained from the
University of Pittsburgh Medical School. For the alcohol
self-administration studies, mice from the F6 and F7
generations were used at an age of 10–13 weeks. A total of
17 a1 (�/�) and 15 a1 ( + / + ) mice were used (total
N¼ 32). Of these, six were female a1 (�/�) and eight were
female a1( + / + ); while 11 were male a1 (�/�) and seven
were male a1 ( + / + ). Mice were group housed in the
vivarium (3–4 per cage) on a 12-h light/dark cycle (lights on
at 0700 hours at 211C). At the beginning of the study,
the mice weighed between 20 and 40 g. The animals
were group housed in plastic cages in a vivarium at 211C
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on a 12 h light/dark cycle. Food and water were provided ad
libitum for the animals, except for the conditions noted
under the training phase in the two alcohol self-adminis-
tration studies. The treatment of all subjects was approved
by the institutional review board within the School of
Science at IUPUI. All procedures in Experiment 1, as well as
Experiments 2 and 3 below were conducted in strict
adherence with the NIH Guide for the Care and Use of
Laboratory Animals.
Details on how the mice were derived have been

previously (for a review, see Vicini et al, 2001; Kralic
et al, 2002a) and more recently reported (Kralic et al, 2003).
However, several phenotypical characterizations should be
noted here in relation to the a1 (�/�) mice (Vicini et al,
2001; Kralic et al, 2002a). These phenotypical characteriza-
tions apply to Experiments 1, as well as 2 and 3 below. First,
the a1 (�/�) mice have a 25-Hz handling-induced tremor.
Second, there is a 3776% reduction in seizure threshold in
the a1 (�/�) mice. Third, there is a slight, but nonsigni-
ficant weight reduction in the a1 (�/�) KO mice. Finally,
there is a 65% decrease in b2/b3 subunit peptide expression,
a 47% decrease in g2-subunit peptide expression, and 37 and
39% increase in a2- and a3-subunits, respectively. This
molecular compensatory response may have important
consequences, since distinct behavioral responses have
been associated with specific receptor subtypes (for a recent
review, see Vicini and Ortinski, 2004; Rudolph and Mohler,
2004; Boehm et al, 2004; Kralic et al, 2002b).

Apparatus: Animals were tested in seven standard mice
operant chambers (Coulbourn Instruments, Inc., Lehigh
Valley, PA) equipped with two levers and two dipper
assemblies. While only one lever was active during the
sessions, the force required by the mice to depress the active
lever was reduced during and after training to compensate
for the slight tremor present in some, but not all of the a1
(�/�) mice. Red, yellow, and green cue lights were used to
indicate the presence of a reinforcer. The lights were
illuminated for 2.5 s. Each reinforced response delivered a
0.02ml of the reinforcer. The reinforcer was presented for a
duration of 3.5 s. However, some data were collected using a
10 s duration for comparison with the 3.5 s data to
compensate for the tremor in the a1 (�/�) mice. Operant
sessions were 30min in length; however, a 60min session
was also employed to allow additional time for the a1 (�/�)
mice to perform because of the tremor. In addition, while a
minimum threshold of 4 g of force/pressure typically
activates the response lever for mice, the operant device
was modified such that a minimum of 2 g of force/pressure
activated the response lever.

Solutions: The EtOH (USP) (2–10% v/v) and sucrose
(Fisher Scientific) solutions (2–10% w/v) were prepared in
deionized water for the operant chamber as previously
described for oral self-administration (June, 2002).

Sucrose as the reinforcer: During the initiation period
(Phase I), all mice (total N¼ 32) were water-deprived for 2
weeks using a 23.5 h fluid deprivation schedule to facilitate
lever pressing. For 30min daily at 0010 hours, animals
received a 10% (w/v) sucrose solution. Mice lever-pressed
for the sucrose under a fixed-ratio 1 (FR1) schedule for the

2-week period. The mice were water-deprived for more than
the typical 5 days of training (June et al, 2003; June, 2002)
because the animals did not initiate lever-press responding
after a 5-day period. During the 2-week period, the mice
were weighed twice weekly and observed for signs of
distress. If there was a greater than 10% reduction of body
weight, the water deprivation was discontinued. Approxi-
mately 65% of the a1 ( + / + ) mice began lever pressing at
the end of week 1 and the water deprivation was no longer
required; however, the remainder required the deprivation
throughout the second week. Unlike the a1 ( + / + ) mice, all
a1 (�/�) mice required 2 weeks of water deprivation to
initiate even a minimal level of lever-press responding for
sucrose (see below). Nevertheless, the deprivation proce-
dure was discontinued after the initial 2 weeks, and animals
subsequently lever-pressed for the sucrose solution until
their responses stabilized, which was defined as having daily
responses within 720% of the average responses for five
consecutive days. In Phase II of the operant training, the
sucrose initiation procedures continued, however, the
reward cost was increased to an FR4 schedule from the
FR1 schedule. As with the FR1 schedule, the mice continued
to lever-press for the sucrose solution under the FR4
schedule until their responses stabilized. Hence, the total
time under the FR4 schedule was 2 weeks.

EtOH as the reinforcer: During Phase III, mice (total
N¼ 32) were trained to lever press for EtOH (10% v/v)
using a modified version of the sucrose fading-technique
previously used for self-administration of EtOH in rats
(Harvey et al, 2002; June, 2002). The only exception
being that the mice were not deprived since they had
already been trained to initiate the sucrose reinforcer
above. For 30min daily, animals received either an EtOH+
sucrose cocktail mixture or EtOH solution. Specifically,
mice were trained to lever-press for an EtOH+ sucrose
cocktail mixture under an FR1 schedule. The concentration
of sucrose was decreased in a step-wise fashion (10, 8, 6, 4,
2, and 0%) and the EtOH was increased in a similar fashion
(2, 4, 6, 8, and 10%) over 7–10 days. Animals were
subsequently stabilized on the 10% EtOH solution for 7
days under the FR1 schedule. Following stabilization on the
FR1 schedule, the Phase IV stage began. Under Phase IV,
the reward cost was increased for the 10% EtOH solution
from an FR1 schedule to an FR4 schedule. Mice were then
stabilized on the FR4 schedule for the 10% EtOH solution
for 2 weeks. Stabilization on the 30min daily FR4 schedule
was subsequently followed by stabilization on a 60min daily
FR4 schedule for 2 weeks (Phase V). Phase V was conducted
in an attempt to increase the level of responding in both
genotypes, and to further confirm that EtOH was indeed
serving as a reinforcer in the mice lines. The 10% EtOH
concentration was employed since it is one of the standard
concentrations that is used in the literature investigating
EtOH neuromechanism of action in rodents, and has been
shown to produce significant BAC levels in many murine
models (for a review, see Grahame and Grose, 2003). The
10% concentration was also employed because it lends itself
to cross comparison within the alcohol literature on operant
and home-cage EtOH intake in both mice and rats (Elmer
et al, 1987; Samson et al, 1989; also see Grahame and Grose,
2003).
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BAC measurement: To ensure animals were consuming
pharmacologically relevant amounts of EtOH during
operant sessions, BACs were collected in a subset of
animals. A random sample of five female and six male a1
( + / + ) mice, and five female and five male a1 (�/�) mice
were selected. Specifically, after the 30-min operant session,
the mice were placed on a heating pad and anesthetized
with ketamine–xylazine cocktail (0.1ml), in order to restrict
their movement during the collection of the blood sample.
When the animals no longer responded to a pinch to the
tail, a heparin-coated microhematocrit tube was used to
pierce the retro-orbital sinus membrane. Approximately,
40–60 ml of whole blood was collected into a heparin-coated
microsample tube. Hemostatis was achieved by applying
light pressure to the closed eye with cotton until the
bleeding stopped. The mice remained on the heating pad
until they were able to stand and ambulate normally. Then
the mice were returned to their original cages. After
collection, the whole blood was immediately centrifuged
for 5min at 1100 r.p.m. The specifics of the BAC analyses
have appeared in several previous reports from our
laboratory (June et al, 2003; Foster et al, 2004). The retro-
orbital sinus procedure is frequently used with mice and has
not been reported to impair subsequent responding/activity
in behavioral paradigms (Kralic et al, 2003).

2-h limited access home-cage paradigm. The same a1
(�/�) and a1 ( + / + ) mice (N¼ 32) that were used in the
operant self-administration experiments above were also
used in the limited access experiments. A 1-week period
occurred between the end of the operant self-administration
study and the beginning of the limited access study. Because
the mice were initially group housed during the operant
studies, an acclimation phase was necessary to singly house
them in the home-cage study. Thus, for 2 h daily, the
animals were placed individually in a home cage for 7 days
prior to the beginning of the limited access drinking study.
Then, for a 2-week period, all mice were given EtOH in one
bottle, and water in the other. Mice were initially deprived
for 22 h to initiate EtOH drinking, however, after 10 days the
deprivation schedule was completely discontinued. Mice
were never deprived of food. During the initial 3 days, the
mice were given 3% (w/v) EtOH. During the next 4 days,
they were given 6% (w/v) EtOH, while during the last 3 days
they were given 10% (w/v). A similar ascending procedure
has been used previously in outbred rats (for details, see
June, 2002). Approximately 10.0ml of EtOH (10% v/v) was
weighed out and placed on the cage in calibrated drinking
tubes that had minimal spillage (ie, 0.05ml) over the 2 h
period. A similar volume of water was also presented to the
mice. The justification for employing only the 10% EtOH
concentration was noted above in the EtOH reinforcement
section. Nevertheless, the animals had free access to the
drinking tube for the 2-h period. At the end of the drinking
session, the animals were placed back into their home cages
and the amount of EtOH and water was recorded. The
drinking session took place during the light cycle, between
1200 and 1500 hours. After the failure of both the a1 (�/�)
and a1 ( + / + ) mice to consume EtOH levels above
0.04770.01ml, the 2 h, two-bottle limited access paradigm
was modified to a 2 h, one-bottle limited access EtOH
paradigm in both the a1 (�/�) and a1 ( + / + ) mice.

Following stabilization of the 10% EtOH after a period of 7
days, the deprivation schedule was discontinued. Mice were
then maintained under the 2 h, one-bottle limited access
EtOH paradigm for 7 additional days. The data depicted in
Figure 2 represents the average of the final 2 days.

Experiment 2

EtOH-enhanced locomotor stimulation: evaluation of
BDZ receptor antagonists.
Subjects: To conduct the initial locomotor activity

studies, a second cohort of male and female GABAA a1
(�/�) and a1 ( + / + ) mice (total N¼ 31) were obtained
from the University of Pittsburgh Medical School following
weaning. The mice (F6 and F7 generations) were of similar
age and maintained under identical conditions as Experi-
ment 1, albeit the mice were never deprived of food or
water. Of the 31 mice, five were female a1 (�/�) and six
were female a1( + / + ), while nine were male a1 (�/�) and
11 were male a1( + / + ). At the beginning of the study, the
mice weighed between 19 and 36 g.

Drugs: For the open-field studies, EtOH (15% v/v) was
prepared daily by mixing 95% pure ethanol (U.S.P.A.) with
a 0.90% sodium chloride solution in an injection volume
sufficient to produce doses of 0.875–4.0 g/kg. bCCt (1.0–
15.0mg/kg) and flumazenil (1.0–15.0mg/kg) were prepared
as an emulsion in 1% Tween-20 vehicle (Sigma-Aldrich, St
Louis, MO) and mixed with a 0.90% sodium chloride
solution to a volume of 10ml/kg. When necessary, some
drug treatments were sonicated. bCCt was synthesized by
several of the authors (WY and JMC) using previously
published procedures (see Cox et al, 1998; June et al, 2003),
while Ro15-1788 (flumazenil) was a gift from Hoffman
La Roche (Nutley, NJ). The a1-selective mixed agonist–
antagonist bCCt (Griebel et al, 1999; June et al, 2003) was
selected since it has been shown to block the reinforcing,
and the locomotor depressant actions of EtOH (June et al,
2003). Flumazenil, the reference ligand (File and Pellow,
1986) was used since it has also been reported to antagonize
some of alcohol’s neurobehavioral effects (Lister, 1988;
Scollo-Lavizzari and Matthis, 1985; Klotz et al, 1986; Knapp
et al, 2004), albeit, this antagonism has been somewhat
controversial (Koob et al, 1986; Lister, 1988; June and Lewis,
1994). The two BDZ antagonists were also selected since
their in vitro efficacy profile has recently been characterized
at the a1–a5 receptor subunits (Harvey et al, 2002; June
et al, 2003). The efficacy profile of BDZ receptor ligands has
been suggested to be important in determining the precise
neuromechanism of action in which ligands antagonize
alcohol neurobehavioral properties (for a review, see
Jackson and Nutt, 1995; June et al, 2003; McKay et al, 2004).

Apparatus: Horizontal activity (ie, ambulatory beha-
viors), total distance, and stereotypy (eg, repetitive groom-
ing, etc.) were recorded individually for 10min in a
Plexiglas chamber (42� 42� 30 cm) using a Digiscan
Activity Monitoring System (Accuscan Electronics, Colum-
bus, Ohio, USA). Movement was detected by two sets of four
infrared perpendicular photo-beams in the walls of the
chamber with 16 beams along each axis. Ambulatory
counts were defined as the breaking of the beams in the
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X (left–right) or Y-axis (front–back). Total distance was
measured using the total number of centimeters (cm)
traveled. Measurement of stereotypic behavior comprised
repetitive breaking of the same beam in a given plane of the
open field. All experiments were conducted under dim
lighting (25W) conditions. Immediately after each mouse
had completed its session, the entire activity chamber was
cleaned to eliminate odors and related stimuli to prevent the
next subject from following the path of the prior mouse.
Other specific details of these procedures and apparatus
have previously and recently been reported (June et al,
1998a, b; McKay et al, 2004).

Study 1: evaluation of EtOH dose response.
Procedures: To habituate the mice to the activity monitor

prior to any drug treatment, mice were given 3-daily 10min
sessions (June et al, 1998a, b; McKay et al, 2004). These
sessions thoroughly habituated the animals to the open-
field arena. Activity measurements collected between drug
injection days were evaluated to determine any baseline
shifting during the testing phase. Following the 3-day
acclimation phase, mice received in a randomized sequence
‘control’ saline pretreatment injection volumes appropriate
to doses of 0.875–4.0 g/kg of EtOH. Then, following the
saline treatments, mice received in another randomized
sequence injections of EtOH alone (0.875–4.0 g/kg). To
confirm the reliability of the EtOH injections, each of the
EtOH doses (0.875, 1.75, 3.0, and 4.0 g/kg) were randomly
administered twice. The two EtOH injections were subse-
quently averaged for comparison with the control condi-
tion. EtOH was administered 5min prior to the mice being
placed in the open field. To control for residual carryover
effects, each drug pretreatment was separated by at least 3–5
days and subsequent pretreatments were never adminis-
tered until activity levels returned to baseline levels (see
McKay et al, 2004; Cook et al, 2005). All injections were
administered by the i.p. route.

Study 2: evaluation of BDZ antagonists on EtOH’s
(3.0 g/kg) actions.
Procedures: Following evaluation of the EtOH dose

response, mice received a randomized sequence of EtOH
(3.0 g/kg) alone, or in combination with bCCt (3.0mg/kg +
3.0 g/kg; 7.5mg/kg + 3.0 g/kg, or 15mg/kg + 3.0 g/kg). Mice
also received in a randomized sequence injections of
flumazenil in combination with EtOH (3.0mg/kg + 3.0 g/
kg, 7.5mg/kg + 3.0 g/kg, or 15mg/kg + 3.0 g/kg). To deter-
mine the intrinsic actions of the BDZ antagonists, the
highest dose of bCCt (15mg/kg) and all three flumazenil
doses (3.0, 7.5, 15mg/kg) were given alone in a randomized
sequence. Only the highest dose of bCCt was employed due
to the limited amount of this compound at the time of
experimental testing. The 3.0 g/kg EtOH injection was
randomly given a third time for evaluation of its interaction
with the two BDZs. The 3.0 g/kg EtOH dose was selected as
the combination EtOH dose with bCCt and flumazenil since
it like the 1.75 g/kg dose was the ‘optimal’ stimulating EtOH
dose in the a1 (�/�) mice. In addition, the 3.0 g/kg EtOH
dose was selected as the combination dose since it, unlike
the 1.75 g/kg dose, produced a marked reduction in
locomotor behaviors in the a1 ( + / + ) mice. Hence, this

differential genotype effect of the 3.0 g/kg EtOH dose
permitted the investigation of the a1 receptor and its
interaction with the BDZ receptor complex in modulating
EtOH’s stimulant and depressant actions using an estab-
lished alcohol antagonist (June et al, 2003). As noted above,
EtOH was administered 5min prior to being placed in
the open field. When bCCt or flumazenil was given in
combination with EtOH, they were given 10min prior to the
EtOH; however, when given alone, they were administered
15min prior to being placed in the open field. All mice
received their drug treatment in a randomized design to
control for order and sequence effects. To control for
residual carryover effects, each drug pretreatment was
separated by at least 3–5 days and subsequent pretreatments
were never administered until activity levels returned to
baseline levels (for additional details, see June et al,
1998a, b; McKay et al, 2004; Cook et al, 2005). The rationale
for using a 5min prior to behavioral testing for EtOH was
based on the literature showing that this period represents
the ascending limb of the BAC curve, which corresponds to
the activational/euphoric action of alcohol (Frye and Breese,
1981; Lewis and June, 1990). The rationale for using the
15min interval was based on extensive work in our
laboratory (June et al, 1998a, b; June et al, 2003; Harvey
et al, 2002) and those of Breese et al (2004) demonstrating
that BDZ antagonist can attenuate/block a number of
EtOH’s neurobehavioral effects. All drug injections were
given i.p.

Experiment 3

Evaluation of dopamine receptor antagonists on
EtOH’s (1.5 g/kg) actions.
Subjects: A third cohort of post weaned a1 (�/�) and

a1 ( + / + ) mice were obtained from the University of
Pittsburgh Medical School for the EtOH alone, in combina-
tion with the DA antagonists locomotor activity studies. The
mice were from the F8 and F9 generations and their ages
were between 10 and 13 weeks. They were maintained and
derived (see Vicini et al, 2001; Kralic et al, 2002a, 2003)
under identical conditions as Experiments 1, and 2, but
were never deprived of food or water. In addition, similar
phenotypical characterizations were substantiated in the F8
and F9 generations as in prior generations. A total of 23 a1
(�/�) and 27 a1 ( + / + ) mice were used (total N¼ 50).
Of these, 14 were female a1 (�/�) and 18 were female
a1 ( + / + ), while nine were male a1 (�/�) and nine were
male a1 ( + / + ). At the beginning of the study, the mice
weighed between 27 and 42 g.

Drugs: Eticlopride and SCH 23390 were obtained from
Sigma-Aldrich, (St Louis, MO). The two DA antagonists
were mixed with a 0.90% sodium chloride solution to a
volume of 10ml/kg. The D1 receptor antagonist SCH 23390
and the D2 receptor antagonist eticlopride were selected
because of the high concentration of D1 and D2 DA
receptors that have been reported in the mesoaccumbens-
pallidal circuitry (White and Wang, 1984; Napier and
Chrobak, 1992; Lu et al, 1998). These ligands were also
selected due to their selectivity (Seeman and Ulpian, 1988),
and their established roles in blocking the reinforcing
actions of alcohol (Hodge et al, 1997; McBride and Li, 1998;
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Liu and Weiss, 2002; Eiler et al, 2003; for a review, see
Melendez et al, 2005). However, as with flumazenil, this
antagonism has been somewhat controversial (Linseman,
1990; Brown et al, 1982; for a recent review, see June and
Eiler, in press).

Procedures: Animals were habituated in an identical
manner as the BDZ study as noted above. Following
habituation, mice received a randomized sequence of saline,
EtOH alone (1.5 g/kg), eticlopride/SCH 23390 in combina-
tion with EtOH (0.01mg/kg + 1.5 g/kg; 0.02mg/kg + 1.5 g/kg;
0.08mg/kg + 1.5 g/kg) or eticlopride/SCH 23390 alone (0.01;
0.02; 0.08mg/kg). EtOH alone was administered 5min prior
to being placed in the open field. When eticlopride or SCH
23390 was given in combination with EtOH, they were given
2 h prior to the EtOH. When the DA antagonists were given
alone, they were administered 2 h and 5min prior to being
placed in the open field. All mice received their drug
treatment in a randomized design to control for order and
sequence effects. To control for residual carryover effects,
each drug pretreatment was separated by at least 3–5 days
and subsequent pretreatments were never administered
until activity levels returned to baseline levels (see June
et al, 1998a, b; McKay et al, 2004). The DA receptor
antagonist doses used in the present study were based on
prior reports in the literature demonstrating their effective-
ness in blocking the locomotor stimulant actions of EtOH in
mice (Shen et al, 1995; Cohen et al, 1997). The rationale for
using the 2 h interval was also based on an extensive search
of the alcohol self-administration (see Pfeffer and Samson,
1988; Samson and Hodge, 1996) and locomotor activational
(Shen et al, 1995; Cohen et al, 1997) studies demonstrating
that a 0.5–2.5 h interval is needed to avoid untoward/
nonspecific effects of the DA antagonist on behaviors. In
addition, the 2 h time period was used for administration of
the DA receptor antagonists based on preliminary work
from our laboratory showing little if any intrinsic effects
being observed on the three parameters of locomotor
behaviors (ie, ambulatory count, total distance, stereotypy
counts). However, this was not the case with shorter
intervals such as the 0.5–1.0 h in the mutant or wild-type
mice. The 2 h interval is also consistent with previous work
evaluating the role of D1 and D2 receptors in motivational
related task, particularly where locomotor behaviors are an
integral component of the dependent variable measure
(CTA learning, place conditioning learning) (Hoffman and
Beninger, 1988). All drug injections were given i.p.

Statistical Analyses

Data are reported as the mean7SEM value. To evaluate
differences between groups, analysis of variance (two-way
ANOVA) with Newman–Keuls post hoc test analyses were
carried out in all experiments. In Experiment 3, the averages
of the no injection and saline injection conditions were
pooled and used as the ‘control condition’ for comparison
with the other drug treatment conditions. Because the study
employed both male and female mice of both genotypes, the
initial analyses across experiments 1, 2, and 3 were
investigated using gender as a factor; however, since no
effect of gender was found in any of the experiments, the
data were collapsed for analyses in all three experiments.

RESULTS

Experiment 1

Etoh and sucrose self-administration paradigms.
Operant self-administration: EtOH. Figure 1a shows

EtOH-maintained responding (10% v/v) for a1 (�/�) and
a1 ( + / + ) mice during a 30-min operant session under an
FR4 schedule of reinforcement. The data depicts five
consecutive test days following stabilization after the mice
had undergone the sucrose-fading procedure. The a1 (�/�)
mice lever-pressed profoundly less for EtOH compared with
the a1 ( + / + ) mice (two-way ANOVA; genotype (GT):
F(1,144)¼ 74.6, po0.001; Day: F(4,144)¼ 1.49, p40.05 with no
interaction: F(4,144)¼ 1.72, p40.05). This profound differ-
ence was observed on all days tested (eg, days 1–5),
(pp0.05).
Sucrose. Figure 1b shows sucrose-maintained responding

(10% w/v) for a1 (�/�) and a1 ( + / + ) mice during a 30-
min operant session under an FR4 schedule of reinforce-
ment. The data depicts five consecutive test days following
stabilization after the mice had undergone the sucrose-
training procedures. Compared with the a1 ( + / + ) mice,
the a1 (�/�) lever-pressed for profoundly less sucrose (10%
w/v) (two-way ANOVA; GT: F(1,144)¼ 192.7, po0.01; day:
F(1,144)¼ 0.89, p40.05; with no interaction: F(1,144)¼ 0.8724,
p40.05). Similar to the responding maintained by alcohol,
the a1 (�/�) mice consumed markedly less sucrose on all
days tested (days 1–5), relative to the a1 ( + / + ) mice
(po0.01).
EtOH. Figure 1c shows EtOH-maintained responding

(10% v/v) for a1 (�/�) and a1 ( + / + ) mice during a 60-min
operant session under an FR4 schedule of reinforcement.
The data depicts four consecutive test days following
stabilization after the mice had undergone the sucrose-
fading procedure. Again, the a1 (�/�) mice lever-pressed
profoundly less for EtOH compared with the a1 ( + / + )
mice (two-way ANOVA; GT: F(1,26)¼ 38.25, po0.0001; day:
F(2,52)¼ 1.22, p40.05 with no interaction: F(2,52)¼ 1.16,
p40.322). This marked difference in responding was
observed on test days 1–5 (po0.01). Compared with the
30min session, responding during the 60min session was
markedly greater in the a1 ( + / + ) mice across each of the 4
test days (po0.01); however, it was similar in the a1 (�/�)
mice (p40.05).
BAC determination. Body weights of the a1 ( + / + ) mice

(N¼ 11) used for BAC determination ranged from 25 to
40 g. EtOH (10% v/v) responding for the a1 ( + / + ) mice
yielded intakes of 0.28–7.17 g/kg of absolute EtOH. Con-
sumption in milliliters was 0.10–2.95. BACs ranged from
11.7 to 34.4mg/dl. Body weights of the a1 (�/�) mice
(N¼ 10) used for BAC determination ranged from 22 to
28 g. EtOH responding for the a1 (�/�) mice yielded
intakes of 0.0–0.3 g/kg of absolute EtOH. Consumption in
milliliters was 0.0–0.10. BACs ranged from 1.8 to 4.45mg/dl.
There was a significant difference in the BACs of the a1
( + / + ) in comparison with the a1 (�/�) mice (mean¼
2872.3 vs 2.670.13mg/dl) (t¼ 8.84; df¼ 19, po0.01, two-
tail t-test).
2-h limited access paradigm: EtOH. Figure 2 shows EtOH

(10% v/v) intake in g/kg for the a1 (�/�) and a1 ( + / + )
mice during the 2-h limited access home-cage paradigm.
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Following stabilization on the EtOH only availability
paradigm for 7 days, average intakes on the 6–7th day
were recorded for comparison between the two genotypes.

A significant difference in EtOH (10% v/v) intake
between the a1 (�/�) and a1 ( + / + ) mice was observed
(F(1,16)¼ 7.9, pp0.013). EtOH intake in g/kg for the a1
(�/�) mice was 0.5837 0.34 vs 1.847 0.29 for the a1
( + / + ) (po0.01).

Experiment 2

Saline pretreatments. As noted above in the procedure
section, before the drug treatments began, the mice were
acclimated to the open-field testing and given randomized
saline pretreatments in injection volumes sufficient to
produce EtOH doses of 0.875–4.0 g/kg. A within genotype
evaluation of these data across each of the three locomotor
parameters, at the four different saline injection dose
volumes (ie, 0.875–4.0 g/kg), revealed that each of the saline
dose volumes were statistically similar (p40.05). The sole
exception was with the stereotypy count parameter in the a1
(�/�) (F(3,42)¼ 3.98, po0.01) (data not shown). In addi-
tion, a between-genotype evaluation across each of the three
locomotor parameters, at the four different saline injection
dose volumes revealed, except for the stereotypy parameter
at the 0.875 g/kg dose level (po0.05), that none of the other
saline pretreatments were significantly different (p40.05)
between the a1 (�/�) and a1 ( + / + ) mice (data not
shown). Hence, because the different saline injection dose
volumes were similar within and between each genotype
across the three locomotor parameters (exception noted
above), the saline data were pooled across each activity
parameter for each genotype and used as a baseline value
for comparison with the EtOH alone (Figure 3a–c), and
EtOH in combination with the BDZ antagonists data (Figure
4a–b). The pooled data between the a1 (�/�) and a1 ( + / + )
mice across the three locomotor parameters were not
statistically significant (p40.05).
The initial presentation of the locomotor activity data

following the EtOH treatment depicts three locomotor
activity parameters (Figure 3a–c). The rationale for this
stems from the fact that previous studies evaluating EtOH
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Figure 1 (a) The rate of operant responding for EtOH (10% v/v) for the
GABAA a1 (�/�) KO and WT (+ / + ) mice on an FR4 schedule during a
30min session for 5 days. (b) The rate of operant responding for sucrose
(10% w/v) for the GABAA a1 (�/�) KO and WT (+ / + ) mice on an FR4
schedule during a 30min session for 5 days. The GABAA a1 (�/�) KO
mice consumed significantly less ethanol and sucrose. (c) The rate of
operant responding for EtOH (10% v/v) for the GABAA a1 (�/�) KO and
WT (+ / + ) mice on an FR4 schedule during a 60min session for 4 days.
*po0.01.
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Figure 2 EtOH (10% v/v) consumption for the GABAA a1 (�/�) KO
and WT (+ / + ) mice during a 2-h limited access session. The GABAA a1
(�/�) KO mice consumed significantly less ethanol. *po0.01.
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or BDZ actions on locomotor behaviors in the a1 mutant
and wild-type mice have employed ambulatory counts
(Blednov et al, 2003b), total distance (Kralic et al, 2003),
and stereotypy (Reynolds et al, 2003) measurements. Thus,
by illustrating all three parameters in the present study, a
comparison across the three studies can be made before (ie,
basal activity) and following drug treatment. However,
because of the relatively similar profile of effects observed
across the three locomotor activity parameters following the
BDZ and DA interactional studies with EtOH, only the
ambulatory count parameter will be illustrated. The authors

selected the ambulatory count parameter (also referred to as
horizontal activity) to illustrate the BDZ and DA interac-
tional studies with EtOH since this parameter is one of the
most frequently presented locomotor activity measures in
the pharmacology literature (see Lister, 1988; Phillips and
Shen, 1996; June et al, 1998a, b), and hence, lends itself to
comparisons across many studies in the literature.

Study 1: evaluation of EtOH dose response.
Ambulatory counts: Figure 3a shows ambulatory counts

for the a1 (�/�) and a1 ( + / + ) mice following EtOH
pretreatments (0.875–4.0 g/kg). A two-way ANOVA revealed
a significant dose (F(4,112)¼ 35.56, po0.01) and do-
se� genotype (GT) interaction (F(4,112)¼ 47.73, po0.01);
however, the main effect of GT was not significant
(F(1,28)¼ 0.39, p40.05). While basal activity rates in the
a1 (�/�) mice were reduced relative to the a1 ( + / + ) mice,
these effects did not reach statistical significance (p40.05).
Post hoc tests revealed the 1.75 and 3.0 g/kg EtOH doses
significantly increased ambulatory counts in the a1 (�/�)
mice (po0.01); however, the activation seen with the
0.875 g/kg dose was not significant (p40.05). The reduction
seen with the 4.0 g/kg dose in the a1 (�/�) mice also
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Figure 3 (a) Horizontal activity in the GABAA a1 (�/�) KO and WT
(+ / + ) mice following i.p. administration of EtOH (10% v/v) (0.875–4.0
g/kg). (b) Effects of EtOH (10% v/v) (0.875–4.0 g/kg) on total distance
traveled by the GABAA a1 (�/�) KO and WT (+ / + ) mice in a 10-min
activity monitor session. (c) Stereotypy in GABAA a1 (�/�) KO and WT
(+ / + ) mice following i.p. administration of EtOH (10% v/v) (0.875–4.0
g/kg). **po0.01, *po0.05 EtOH vs Saline control; wwpo0.01 a1 (�/�)
KO vs WT (+ / + ) mice. Data are shown as mean (7SEM).
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reached significance (po0.05). In the a1 ( + / + ) mice, both
the 3.0 and 4.0 g/kg doses produced marked reductions
in ambulation (pp0.05). In addition, a significant genotype
effect was apparent at the 3.0 g/kg dose level with the
a1 (�/�) mice exhibiting a markedly greater activation
compared with the a1 ( + / + ) mice (po0.01).

Total distance (cm): Figure 3b shows total distance in
centimeters for the a1 (�/�) and a1 ( + / + ) mice following
EtOH pretreatments (0.875–4.0 g/kg). A two-way ANOVA
revealed a significant dose (F(4,112)¼ 49.63, po0.01), and
dose�GT interaction (F(4,112)¼ 68.78, po0.01); however,
the main effect of GT was not significant (F(1,28)¼ 0.19,
p40.05). Post hoc analyses confirmed that the 1.75 and
3.0 g/kg doses significantly increased total distance in the a1
(�/�) mice, while the 4.0 g/kg doses significantly reduced it
(po0.01). Similar to the ambulation parameter, post hoc
analyses confirmed that both the 3.0 and 4.0 g/kg doses
produced marked reductions on distance traveled in the a1
( + / + ) mice (po0.01). Finally, at the 3.0 g/kg dose level, a
significant genotype effect was observed with the a1 (�/�)
mice exhibiting a significantly greater activation than the a1
( + / + ) mice (po0.01).

Stereotypy counts: Figure 3c shows stereotypy counts in
the a1 (�/�) and a1 ( + / + ) mice following EtOH
pretreatments (0.875–4.0 g/kg). A two-way ANOVA revealed
a significant dose (F(4,112)¼ 16.32, po0.01) and GT� dose
interaction (F(4,112)¼ 30.56, po0.01). However, the main
effect of GT was not significant (F(1,28)¼ 0.28, p40.05). Post
hoc test revealed that the 1.75 and 3.0 g /kg EtOH doses
significantly increased stereotypy in the a1 (�/�) mice
(po0.05), while the 4.0 dose reduced it (po0.05). In
addition, both the 3.0 and 4.0 g/kg doses reduced stereotypy
in the a1 ( + / + ) mice (po0.01). As with the ambulatory
and distance travel parameters, a simple effect analysis at
the EtOH dose level revealed that at the 3.0 g/kg dose,
a significant effect of genotype was apparent, with the a1
(�/�) mice exhibiting a profound activational effect
compared with the a1 ( + / + ) mice (po0.01).

Study 2: evaluation of BDZ antagonists on EtOH’s
(3.0 g/kg) actions.
bCCt and EtOH: Figure 4a shows the effects of EtOH

alone, and in combination with the various doses of
bCCt (3.0–15.0mg/kg) on ambulation in the a1 (�/�) and
a1 ( + / + ) mice. The highest bCCt dose given alone is
also depicted. Compared with the EtOH alone condition, all
bCCt treatments attenuated the EtOH-induced stimulation
in the a1 (�/�) mice; however, none of the bCCt treatments
were effective in altering the EtOH-induced sedation in the
a1 ( + / + ) mice. A two-way ANOVA revealed a significant
dose (F(4,80)¼ 957.96, po0.01) and GT� dose interaction
(F(4,80)¼ 120.86 (po0.01)); however, the main effect of GT
was not significant (F(1,20)¼ 0.009, p40.05). Newman–
Keuls post hoc analyses confirmed that the 3.0 and
15.0mg/kg doses of bCCt given immediately prior to the
EtOH attenuated the EtOH-induced stimulation in the a1
(�/�) KO mice (po0.01), while the 7.5mg/kg dose resulted
in a complete reversal of the EtOH-induced stimulantion
(po0.05). In further support of the bCCt attenuation, the

combination doses were either indistinguishable from the
saline control condition as with the 7.5mg/kg bCCt
combination (p40.05), or slightly lower as with the 3.5
and 15mg/kg combination conditions (albeit statistically
similar) (p40.05). In contrast, post hoc test showed that
none of the three bCCt doses (3.0–15.0mg/kg) attenuated
the EtOH-induced sedation in the a1 ( + / + ) mice
(p40.05); ambulatory counts for the combination condi-
tions were not significantly different from the 3.0 g/kg EtOH
alone condition in the a1 ( + / + ) mice (p40.05). Newman–
Keuls post hoc test further revealed that given alone, the
15.0mg/kg bCCt dose was without effect on ambulatory
counts in the a1 (�/�) and a1 ( + / + ) mice (p40.05).
Hence, the highest dose of bCCt was devoid of intrinsic
effects in both genotypes on ambulatory behaviors.

Flumazenil and EtOH: Figure 4b shows the effects of
EtOH alone (3.0 g/kg), and in combination with the various
doses of flumazenil (3.0, 7.5, 15.0mg/kg) on ambulation in
the a1 (�/�) and a1 ( + / + ) mice. The three flumazenil
doses given alone are also depicted. A two-way ANOVA
revealed a significant dose (F(7,140)¼ 114.73, po0.01) and
GT� dose interaction (F(7,140)¼ 47.99, po0.01); however,
the main effect of GT was not significant (F(1,20)¼ 0.08,
p40.05). Post hoc analyses confirmed that the combination
doses of flumazenil (3.0–15.0mg/kg) given immediately
prior to the EtOH attenuated the EtOH-induced stimulation
in the a1 (�/�) mice (po0.01); however, flumazenil did not
alter the sedation in the a1 ( + / + ) mice (p40.05). While
the flumazenil combinations in the a1 (�/�) mice were
reduced relative to the control condition, none were
statistically lower than the control condition (p40.05). In
contrast, in the a1 ( + / + ) mice, each of the three flumazenil
combinations were significantly lower compared with
the control condition (po0.01). Flumazenil did not
significantly alter ambulatory behaviors in the a1 (�/�)
or a1 ( + / + ) mice relative to their respective control
conditions (p40.05). However, a genotype comparison at
each of the three flumazenil dose levels shows that activity
in the a1 ( + / + ) mice was markedly enhanced relative
to the a1 (�/�) (pp0.05). This starkly contrasted the
15mg/kg bCCt dose condition given alone in the a1 (�/�)
and a1 ( + / + ) mice (p40.05) (see Figure 4a). Hence, while
flumazenil alone did not significantly alter ambulation
relative to control levels in either genotype (p40.05), it
reduced activity levels in the a1 (�/�) mice/or elevated
activity in the a1 ( + / + ) mice to such an extent that it
produced a ‘profound’ separation between the genotypes on
ambulatory behaviors at the 3.0 (po0.05), 7.5 (po0.01),
and 15mg/kg (po0.01) dose levels.

Experiment 3

Evaluation of dopamine receptor antagonists on
EtOH’s (1.5 g/kg) actions.
Eticlopride and EtOH: Figure 5a illustrates the effects of

EtOH alone (1.5 g/kg), and in combination with the various
doses of eticlopride (0.01–0.08mg/kg) on ambulation in the
a1 (�/�) and a1 ( + / + ) mice. The three eticlopride doses
given alone are also depicted. A two-way ANOVA revealed a
significant dose [F(7, 30)¼ 174.99, po0.01] and dose�GT
interaction (F(7,30)¼ 191.03 (po0.01)) effects; however,
the main effect of GT only approached significane
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(F(1,44)¼ 3.61, p40.05). Compared with the control condi-
tions (eg, no injection and saline injection), the 1.5 g/kg
EtOH injection led to an increase in ambulation in both the
a1 (�/�) and a1 ( + / + ) mice (po0.01). When eticlopride
was given 2 h prior to the EtOH injection, all doses of
eticlopride attenuated the increase in ambulation seen with
EtOH alone in both genotypes (po0.01). Given alone,
eticlopride was without effect in both genotypes (p40.05),
except for the highest dose (0.08mg/kg) that produced a
reduction in ambulation (po0.01). Finally, post hoc
analyses revealed that while the 1.5 g/kg EtOH dose
increased ambulation in both genotypes, the enhancement
was significantly greater in the a1 (�/�) mice (po0.01).

SCH 23390 and EtOH: Figure 5b illustrates the effects of
EtOH alone (1.5 g/kg), and in combination with the various
doses of SCH 23390 (0.01–0.08mg/kg) on ambulation in the
a1 (�/�) and a1 ( + / + ) mice. The three SCH 23390 doses
given alone are also depicted. The EtOH alone data are
redrawn from Figure 5a. A two-way ANOVA revealed a

significant main effect of dose (F(7,168)¼ 88.55, po0.01) and
GT (F(1,24)¼ 5.05, po0.05). A highly significant GT� dose
interaction also emerged (F(7,168)¼ 107.11 (po0.01)). Com-
pared with the EtOH alone condition, similar to the three
eticlopride doses, each of the three SCH 23390 doses
attenuated the EtOH-induced locomotor stimulation
(po0.01). Given alone, SCH 23390 was without effect in
both genotypes, except for the highest dose (0.08mg/kg)
that produced a reduction in ambulatory behaviors in the
a1 ( + / + ) mice (po0.01).

DISCUSSION

The a1-Containing GABAA Receptor Mediates EtOH and
Sucrose-Maintained Responding

The results of the present study demonstrate that the
a1-containing GABAA receptor is necessary for both EtOH
and sucrose-motivated behaviors. BAC levels indicated
a1 ( + / + ) mice consumed pharmacologically relevant
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Figure 5 (a) Horizontal activity in the GABAA a1 (�/�) KO and WT (+ / + ) mice following i.p. administration of the 1.50 g/kg dose of EtOH (10% v/v)
alone and in combination with various doses of eticlopride (0.01–0.08mg/kg). The effects of all doses (0.01–0.08mg/kg) of eticlopride alone are also
depicted. **po0.01 treatment vs Saline control; wwpo0.01 a1 (�/�) KO vsWT (+ / + ) mice; ##po0.01 combination dose vs EtOH alone. Data are shown
as mean (7SEM). (b) Horizontal activity in the GABAA a1 (�/�) KO and WT (+ / + ) mice following i.p. administration of the 1.50 g/kg dose of EtOH (10%
v/v) alone and in combination with various doses of SCH 23390 (0.01–0.08mg/kg). The effects of all doses (0.01–0.08mg/kg) of SCH 23390 alone are also
depicted. **po0.01 treatment vs Saline control; wpo0.05 a1 (�/�) KO vs WT (+ / + ) mice; ##po0.01 combination dose vs EtOH alone. Data are shown
as mean (7SEM).
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amounts of EtOH above and beyond that of the a1 (�/�)
mice in the operant chamber (2872.3 vs 2.670.13mg/dl,
respectively). The data from the two EtOH self-administra-
tion paradigms and the sucrose operant paradigm parallel
those of Blednov et al (2003b) in the 24 h home-cage study
with the 12 and 15% EtOH concentrations. Blednov et al
(2003b), however, did not differentiate between the two
genotypes at the 3, 6, and 9% (v/v) concentrations. This is
likely due to the insensitivity of the home-cage paradigm
(Roberts et al, 2000). It is well documented that a high
correlation exists between intake of EtOH and sweet
solutions in the P and HAD rats (Murphy et al, 2002;
Woods et al, 2003; Eiler et al, 2005). However, it is
important to note that as with the P rats (Stewart et al,
1994), the a1 (�/�) mice did not show an oral preference
for bitter tasting solutions (Blednov et al, 2003b); hence, the
link between EtOH and reinforcement for sweet palatable
solutions in both a1-null mutants and P rats was reinforcer
specific. It should also be noted that the study unfortunately
did not employ a design using multiple EtOH concentra-
tions; thus, the degree to which concentrations in excess of
10% would differentiate the a1 ( + / + ) and a1 (�/�) mice
in the operant chamber is not clear.

Hypothesized Mechanism of Action in Reducing EtOH
and Sucrose-Maintained Responding Following Deletion
of the GABAA a1 Subunit Receptor

While deletion of the GABAA a1- subunit receptor may be
associated with reduction of the positive reinforcing
properties associated with EtOH and sucrose, other
hypotheses must be considered. First, the behavioral
phenotype of the a1 (�/�) mice may be due in part to
the compensatory increases and/or decreases of non-
targeted subunits (ie, 65% decrease in b2/b3 subunit peptide
expression; 47% decrease in g2-subunit peptide expression;
and 37 and 39% increase in a2 and a3 subunits, respectively
(Sur et al, 2001; Vicini et al, 2001; Boehm et al, 2004;
Rudolph and Mohler, 2004)). It is worth noting, however,
that the b2 (�/�) mice did not show a decreased
consumption of EtOH (3–15% v/v) (Blednov et al, 2003b),
suggesting that there is something unique about the a1
subunit that contributes to the decreased lever pressing for
EtOH and sucrose. Second, while the a1 (�/�) mice have
normal ataxic and locomotor behaviors, they possess a 25-
Hz tremor (Vicini et al, 2001; Sur et al, 2001). The tremor
may have affected the ability of the a1(�/�) mice to lever-
press for the available reinforcer, despite modifications to
accommodate the tremor (see Materials and methods).
However, locomotor activity is less of a consideration in the
home-cage paradigm and the a1 (�/�) mice still consumed
markedly less EtOH relative to the a1 ( + / + ). Finally, it
should be noted that very low EtOH doses have been shown
to eliminate/normalize the tremor (unpublished observa-
tions), and thus, a confounding effect of tremor is unlikely
to be present after the a1 (�/�) mice consume minute
quantities of EtOH. Thus, the 25-Hz tremor does not seem
to be a likely hypothesis in explaining the differential
ingestive behavioral profile between the genotypes.
Finally, it is clear that the genotype differentiation was

most profound in the operant chamber of the present study,

irrespective of the reward type. It is possible that deletion
of the a1 subunit may directly/indirectly influence the
production of instrumental responding rather than directly
effect the rewarding stimuli per se. Presently, DA is the
primary neurotransmitter that has been associated with
instrumental responding (for a review, see Salamone and
Correa, 2002). Salamone and Correa (2002) have hypo-
thesized that DA may ‘promote expenditure of effort in
instrumental tasks’, particularly in ratio schedules. One way
in which the a1 subunit might modulate DA is being
localized directly on DA cell bodies in the mesoaccumbens
circuitry in loci such as the VTA (Fritschy and Mohler,
1995; Charlton et al, 1997), or possibly via an action of
GABA interneurons (Johnson and North, 1992) on primary
DA cell bodies. Thus, by removing the a1 inhibitory
GABAergic tone in the VTA, the integrity of the normal
downstream GABA/DA circuitry in reinforcing loci such as
the nucleus accumbens (NAcc) and the VP is compromised,
resulting in an inability of the a1 (�/�) mice to engage in
instrumental responding. It is interesting to note that while
Phillips et al (1998) found that D2 receptor (�/�) mice
were capable of home-cage alcohol drinking (albeit at much
lower levels than their D2 ( + / + ) counterparts), Risinger
et al (2000) reported that the D2 (�/�) mice demonstrated
a profound reduction in EtOH-maintained responding
(similar to a1 (�/�) mice in the current study). Hence, a
reduction of DA neurotransmission in the a1 (�/�) mice
may predispose them to a failure/reduced capacity to
initiate lever-press responding for instrumental reinforcers
(but see June et al, 2003). In contrast to the instrumental
responding hypothesis, it is possible that the inhibitory
GABAergic tone removal may disinhibit DA efflux, resulting
in a downstream elevation of DA in the NAcc, VP, or BST
(see below) (see Harvey et al, 2002). If this was the case, DA
substitute for the EtOH/sucrose reward and the a1 (�/�)
mice would not be appetitively motivated to seek out
rewards.

The Role of the a1 Containing GABAA Receptor in
the Stimulant and Sedative Properties of EtOH: An
Evaluation Across Multiple Locomotor Behaviors

The present study extends prior research demonstrating
that deletion of the a1-containing GABAA receptor enhances
the capacity to observe EtOH-induced stimulation in the
open field (Blednov et al, 2003b; Kralic et al, 2003). How-
ever, in contrast to the Blednov et al (2003b) study, none
of the doses tested produced stimulation in the a1 ( + / + )
mice in Experiment 2. Furthermore, the 3.0 g/kg dose of
EtOH produced only sedation in the a1 ( + / + ) mice (see
Figure 3). These findings observed with the a1 ( + / + ) are
not consistent with the existing literature demonstrating
EtOH-induced stimulation in ‘outbred’ mice with doses of
1.0–3.0 g/kg (Frye and Breese, 1981; Phillips and Shen, 1996;
Cohen et al, 1997). In the a1 (�/�) mice, a dose as high as
4.0 g/kg was required to cause significant suppression.
These mice seem resistant to the sedative effects of EtOH.
The magnitude of suppression with the 4.0 g/kg dose,
however, was similar in both genotypes, albeit it is likely
that the effects of such an intoxicating EtOH dose is
regulated via multiple a receptor subtypes (see Homanics
et al, 1997; Tauber et al, 2003). In the current study,
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however, there is a trend for the a1 ( + / + ) mice to be more
active than the a1 (�/�) mice across the three locomotor
parameters (see Figure 3a–c). Blednov et al (2003b)
also reported that basal activity levels were greater in the
a1 ( + / + ) compared with the a1 (�/�) mice. Thus, basal
difference between the genotypes is not a likely explanation
of the discrepant results between the two studies. Rather,
differences in breeding strategies or genetic backgrounds
maybe a more tenable explanation.

Hypothesized Mechanism of Action Regulating the
EtOH-Induced Activation Following Deletion of the
a1-Containing GABAA Subunit Receptor

While deletion of the a1-containing GABAA receptor
appears to plays a salient role in EtOH-induced stimulant
effects (Kralic et al, 2003; Blednov et al, 2003b), the exact
neuromechanism(s) regulating these effects are not clear.
Several potential hypotheses, however, could account for
these effects. First, in the absence of the a1 inhibitory
sedative influences in CNS brain loci (eg, cortex, thalamus,
hypothalamus, hippocampus, amygdala, ventral pallidum,
midbrain, cerebellum) (Churchill et al, 1991; Fritschy and
Mohler, 1995; Pirker et al, 2000), the EtOH-induced
stimulation maybe unmasked and more readily observed.
Second, it is possible elevation of a2 and a3 receptors in
mesolimbic loci (eg, cortex, hypothalamus, hippocampus,
amygdala, nucleus accumbens, VTA, bed nucleus of the
stria terminalis (BST), etc.) (Fritschy and Mohler, 1995;
Pirker et al, 2000; Kaufmann et al, 2003) enhances the
capacity of i.p. doses of EtOH to activates/modulate GABAA

receptors. These effects could result in an elevation of DA in
putative reward areas (eg, amygdala, nucleus accumbens,
BST) and a subsequent increase in locomotor behaviors. It
is well established that GABAA agonists have been reported
to release DA and increase locomotion (Kalivas et al, 1990).
In addition, GABAA agonists have also been shown to
increase DA neuronal firing in the mesolimbic dopamine
system (Xi and Stein, 1998). Finally, it is possible that
compensatory changes in the a1 mutants may extend
beyond the GABAergic or dopaminergic systems (Reynolds
et al, 2003; Boehm et al, 2004; Vicini and Ortinski, 2004).

BDZ Antagonists Attenuate the EtOH-Induced
Stimulation in a1 (�/�) Mice, but Fail to Reverse
the Sedation in a1 ( + / + ) Mice

The third major finding of the present study was that both
bCCt and flumazenil were capable of significantly attenuat-
ing the EtOH-induced stimulant actions in the a1 (�/�) KO
mice. Recombinant receptor studies show that bCCt
exhibits a 410-fold selectivity for the GABA a1 over the
a2 and a3 receptors, and a 4110-fold selectivity for the a1-
over the a5 subtype (Cox et al, 1995). Thus, bCCt exhibits
the greatest binding selectivity of the currently available a1
receptor ligands (June et al, 2003; McKernan et al, 2000; Cox
et al, 1998). In contrast, flumazenil is a nonselective BDZ-
binding antagonist at the diazepam-sensitive sites (Huang
et al, 2000). In relation to physiological efficacy (ie,
potentiation of GABAergic activity), Xenopus oocyte studies
have reported that both bCCt and flumazenil demonstrate a
neutral or low efficacy agonist response profile across the

a1, a2, a3, a4, and a5 receptors (June et al, 2003). However,
despite the qualitatively similar response profile of bCCt
and flumazenil, unlike bCCt, flumazenil significantly
increased the GABA currents at the a2, a3, and a4 subtypes
relative to the control condition. The functional behavioral
significance of such low-level GABAergic modulation is not
known. The differential interaction of bCCt with the 3.0 g/kg
EtOH dose, however, could be due to bCCt’s action at
different receptor subunits depending on the dose of the
drug administered. For example, in the human HEK cell
assay, bCCt produced GABA neutral effects at the a1–a5
receptors using 1–10 mM concentrations; however, it pro-
duced partial to full agonist effects (23–75%) at 10–100 mM
concentrations at these same receptors (June, 2003). It is
possible a mixed pharmacological profile (ie, agonist or
antagonist) of bCCt may have interacted with the 3.0 g/kg
EtOH dose in the present study.
The current findings are in agreement with those of Lister

(1988) showing that the classic GABA agonist diazepam,
and the BDZ antagonist ZK 93426 attenuate the locomotor
stimulant actions produced by EtOH in mice. While ZK
93426 has been reported to be a ‘prototype’ BDZ antagonist
(Jensen et al, 1984), we previously reported that at the a1–
a4 receptor subtypes ZK 93426 produced a marked
potentiation of GABAergic activity in Xenopus oocytes
(135–145%) (Harvey et al, 2002; June et al, 2003). The
antagonism of the EtOH-induced stimulation by bCCt in the
current study, and by diazepam (0.2, 0.5mg/kg) and ZK
93426 (2, 5mg/kg) in the Lister (1988) study, occurred in
the absence of intrinsic activity. The absence of intrinsic
effects on locomotion by bCCt in the present study also
parallels our prior work with rats (June et al, 2003), and
those of Griebel et al (2001) with mice using doses of 3–
60mg/kg. However, the data with flumazenil showing that it
was an effective antagonist of the EtOH-induced stimulant
effects are at variance with the data by Lister (1988). The
failure of Lister (1988) to observe antagonism by flumazenil
is likely due to the very low doses of the drug employed (2.5,
5.0mg/kg). While similar doses of ZK 93426 (eg, 2.5, 5.0mg/
kg) were also employed by Lister (1988), flumazenil’s
efficacy profile in enhancing GABAergic activity is far less
than that of ZK 93426 (see Harvey et al, 2002; June et al,
2003). Taken together, these data strongly suggest that
partial–full activation of various GABAA receptor subtypes
may reduce the EtOH-induced activational effects in mice.
Given the compensatory increases of the a2 and a3
receptors in the a1 (�/�) mice, these animals would seem
highly sensitive to positive BDZ agonists. Nevertheless,
inhibition of DAergic activity via GABA modulation at
various GABAA receptor subtypes seems plausible to
explain the antagonism of the EtOH-induced activational
effects in the a1 (�/�) mice.
In contrast to the effects of bCCt and flumazenil on the

EtOH-induced activational effects, neither bCCt nor fluma-
zenil antagonized the sedation produced by the 3.0 g/kg
EtOH dose in the a1 ( + / + ) mice. These data contrast
recent (June et al, 2003) and previous reports (June et al,
1998a, b) demonstrating that bCCt and other prototype BDZ
antagonists (eg, ZK 93246, CGS 8216) were effective in
attenuating the sedative actions of alcohol in rats. However,
in these prior studies, a 1.25–1.50 g/kg dose of EtOH was
employed (June et al, 1998a, b, 2003). Thus, it is possible
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that while sedative EtOH doses can effectively be antag-
onized by BDZ receptor antagonists, higher EtOH doses
(X3 g/kg), which effect multiple neurotransmitter systems
(Draski and Deitrich, 1996), are not capable of being
antagonized via BDZ ligands. Finally, a careful analysis of
the flumazenil combination data revealed effects typically
lower than the control condition. It is possible that in the
presence of alcohol, the a2, a3, and a6 receptors are more
sensitive to partial agonist modulation by flumazenil. In the
complete absence of alcohol, however, these receptors
appear less sensitive to BDZ modulation. Such an inter-
pretation is also compatible with the high compensatory
levels of a2,a3, and a6 receptors in the a1 (�/�) mice
(Vicini et al, 2001; Kralic et al, 2002a; Sur et al, 2001).
While flumazenil alone did not significantly alter

locomotor behaviors in the a1 (�/�) mice, it elevated
activity in the a1 ( + / + ) mice to such an extent that it
produced a ‘profound’ separation between genotypes. This
was not the case with bCCt (see Figure 4a vs b).
Nevertheless, the activational effects seen with flumazenil
in the open field in the a1 ( + / + ) mice are consistent with
prior reports with flumazenil ZK 93426, and diazepam (0.2,
0.5mg/kg) (File et al, 1982a, b; File and Pellow, 1986).
Further, in the Lister (1988) study when the activational
doses of diazepam were combined with a stimulant dose of
EtOH (2 g/kg), a profound reduction in exploration,
locomotion, and even ataxia were observed. The data of
the present study illustrating a 34–75% reduction in
locomotor activity in the a1 (�/�) mice following the
bCCt, and flumazenil combinations are consistent with the
Lister (1988) study. Hence, the combined effects of a
stimulant alcohol dose and very low doses of a BDZ agonist
exerts ataxia. This effect is even more exaggerated in the a1
(�/�) mice where selected receptors (ie, compensatory
receptors) may be modulated to a greater degree.

Selective D1 and D2 DA Antagonists Attenuate
the EtOH-Induced Stimulation in a1 (�/�)
and a1 ( + / + ) Mice

The fourth major finding of the present study was that SCH
23390 and eticlopride, a selective D1 and D2 DA receptor
antagonist, respectively (Seeman and Ulpian, 1988), were
both able to attenuate the alcohol-induced stimulation in
mutant mice, in the absence of intrinsic effects. The data of
the present study are in agreement with a series of studies
suggesting a significant role for the involvement of DA in
alcohol-induced activational effects in mice (Shen et al,
1995; Cohen et al, 1997; Le et al, 1997). The data of the
present study are also consistent with the current dogma in
the alcohol field that the D1 and D2 receptors of the
mesolimbic, particularly of the extended amygdala circuitry,
play a critical role in the reinforcing properties of alcohol
(Koob, 1999; Hodge et al, 1997; Phillips et al, 1992; McBride
and Li, 1998; Liu and Weiss, 2002; Eiler et al, 2003;
Melendez et al, 2005). It is interesting to note that unlike
Experiment 2 of the current study, and the prior work by
Kralic et al (2003) using mice of similar genetic background
(eg, Kralic et al, 2003), a 1.5 g/kg alcohol dose significantly
elevated ambulatory behaviors in the a1 ( + / + ) mice of
Experiment 3. The rational for this discrepancy is not totally
clear, however, it is possible that genetic/random drift may

have enhanced the sensitivity of alcohol in the later
generations of a1 ( + / + ) mice. It has been suggested,
however, that random drift may be more salient in earlier,
not later generations (Falconer and Mackay, 1996). Despite
the enhanced sensitivity of the a1 ( + / + ) mice in
Experiment 3, the magnitude of alcohol-induced activation
was still greater in the a1 (�/�) compared with the a1
( + / + ) mice (Figure 5). These effects were also observed
across the total distance and stereotypy count parameters
(data not shown). Together, these data confirm that an
enhanced alcohol-induced activational effect is associated
with genetic deletion of the a1-containing GABAA receptor.
These activational effects within the DA systems are regu-
lated via both D1 and D2 receptor subtypes.

SUMMARY

The present data provides the first demonstration that the
a1-containing GABAA receptor is necessary for EtOH-
motivated behaviors, and motivated responding for a
sucrose reinforcer. The degree to which a ‘global’ deletion
of the a1 subunit relates specifically to oral alcohol
reinforcement compared with general motivated behaviors
is not clear. It is possible that common/overlapping
GABAergic mechanisms regulate motivated responding for
both EtOH and sweet caloric reinforcers. The a1-null
mutants showed increases in motor activity following
low–moderate alcohol doses; however, increases were
observed at one-fold higher doses (1.5 vs 3.0 g/kg) than
those previously reported (Kralic et al, 2003). Further, the
null mutants were resistant to the sedative effects of alcohol.
The removal of the inhibitory GABAergic tone on DAergic,
and possibly other neurotransmitters systems appear to
unmasked alcohol’s stimulatory effects. The BDZ antago-
nists bCCt and flumazenil were able to attenuate the
alcohol-induced stimulation in the mutant mice. This
attenuation was hypothesized to be due to the partial
agonist properties of the BDZ antagonists. Further,
compensatory elevations of non-a1 receptors in the null
mutants appear to sensitize these animals to the weak and
partial agonist properties of BDZ antagonists, and in the
presence of EtOH induces an exaggerated reduction in
locomotor behaviors. Finally, a selective D1 and D2 DA
antagonist was also effective in blocking the alcohol-
induced stimulation in the absence of intrinsic effects.
Thus, alcohol’s locomotor stimulant actions appear to be
regulated in part, via an interaction of both DA- and GABAA

BDZ-dependent mechanisms.
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