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Disturbances of serotonergic neurotransmission in the brain have been implicated in the pathogenesis and maintenance of several

psychiatric disorders. According to recent preclinical and clinical studies, the loudness dependence of auditory evoked potentials (LD) is

related to the central serotonergic neurotransmission in humans. As the serotonergic phenotype has been reported to be associated

with brain-derived neurotrophic factor (BDNF), we studied whether BDNF serum concentrations are related to LD in 109 healthy

human volunteers (62 male, 47 female, age: 42.5713.1 years). Pearson correlation showed a significant negative correlation between the

BDNF serum concentrations and the LD measured at Fz (r¼�0.259, p¼ 0.007) and a trend for the Cz electrode (r¼�0.185,

p¼ 0.055). Although this association needs to be replicated, the results are in line with the assumption that low serum BDNF levels

reflect low central serotonergic neurotransmission as indicated by a strong LD.
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INTRODUCTION

Disturbances of serotonin neurotransmission in the brain
have been implicated in the pathogenesis and maintenance
of several psychiatric disorders and symptoms, that is,
depression, alcoholism, impulse control disorders, aggres-
sion, suicidal behavior, anxiety, and obsessive compulsive
behavior (Senkowski et al, 2003; Heinz et al, 2001; Petty
et al, 1996). The monoamine hypothesis of depression
was first formulated 40 years ago (Schildkraut, 1965).
For instance, levels of the major serotonin metabolite
5-hydroxyindoleacetic acid (5-HIAA) have been reported
to be lower than normal in the cerebrospinal fluid of
patients with depression (Cheetham et al, 1991), although
this is not a consistent finding (Gjerris, 1988). A relatively
reliable observation is that activity of the serotonin
transporter in platelets is reduced in patients with depres-
sion, a model for neuronal serotonin activity (Owens
and Nemeroff, 1994). In line with this, an investigation
with b-CIT single photon emission computed tomography

reported evidence for a reduction in the activity of the
transpoter in patients with depression compared with
healthy controls (Malison et al, 1998). Moreover, an
increase in the density of postsynaptic cortical 5-HT2
receptor-binding sites of depressed suicide victims and
unmedicated depressed patients have been observed by
post-mortem studies (Stanley and Mann, 1983; Yates et al,
1990) and PET investigations (Biver et al, 1997). It has been
suggested that upregulation of cortical 5-HT2 receptors in
depression is an adaptive response to reduced synaptic
serotonin (Owens and Nemeroff, 1994).
In recent years, growth and function of monoamine-

containing neurons have been extensively investigated with
respect to neurotrophins. It has been suggested that
depression or pathophysiological subgroups of depressive
disorders may constitute a subtle form of neurotrophin-
related neurodegeneration affecting serotonergic neurons
(Altar, 1999; Duman et al, 1997). The neurotrophin brain-
derived neurotrophic factor (BDNF) influences the pheno-
type, structural plasticity, and survival of serotonergic
neurons (Eaton et al, 1995; Mamounas et al, 1995; Siuciak
et al, 1996). In particular, BDNF promotes the sprouting of
mature, uninjured serotonergic axons and chronic treat-
ment with BDNF leads to enhancement of the regenerative
sprouting of serotonergic axons, damaged by the neurotoxin
p-chloroamphetamine (Mamounas et al, 1995, 2000). This
BDNF-related stimulation of serotonergic phenotype, in
terms of increased neuronal number and neuritic extension,
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would suggest that an increased serotonergic transmission
is possibly underlying the antidepressant-like effects
reported for BDNF (Siuciak et al, 1997).
The BDNF-mediated stimulation of the neuronal seroto-

nergic phenotype is likely mediated by tyrosine kinase
receptor (TrkB)-dependent mechanisms (Rumajogee et al,
2002). Moreover, an upregulation of tryptophan hydro-
xylase mRNAFthe rate-limiting enzyme in serotonin
synthesisFhas been demonstrated after BDNF injection
in rat raphe nuclei (Siuciak et al, 1998).
With respect to human electrophysiology, efforts have

been directed to identify indicators of central neurotrans-
mitter activity. Since evidence for a modulation of the
loudness dependence (LD) of the auditory evoked N1/P2-
component by changes of the central serotonergic activity
was reported in humans (von Knorring and Perris, 1981)
and animals (Juckel et al, 1997, 1999) the LD was
hypothesized to be such an indicator (Hegerl and Juckel,
1993). The LD denotes the amplitude change of auditory
evoked potentials (AEPs) in response to different stimulus
intensities. A strong LD has been proposed to indicate a low
serotonergic activity and vice versa. For example, the LD in
behaving cats was found being decreased by application of
the 5-HT1a-receptor agonist 8-OH-DPAT and increased by
the 5-HT2-receptor antagonist ketanserin (Juckel et al,
1997). Empirical clinical support for this hypothesis comes
from studies showing that a strong LD in depressed patients
is related to a favorable therapeutical outcome to serotonin
agonistic agents (Gallinat et al, 2000; Hegerl and Juckel,
1993). Moreover, intraindividual changes of blood serotonin
concentrations were negatively correlated with correspond-
ing changes of the LD in patients with major depression
(Hegerl et al, 1991). Furthermore, a strong LD was
described in abstinent ecstasy users which are hypothesized
to possess a diminished serotonergic activity (Tuchtenha-
gen et al, 2000), while patients with a serotonin syndrome, a
possible side effect during SSRI treatment characterized
by confusion, restlessness, myoclonus, and hyperthermia,
were shown to have a weak LD (Hegerl et al, 1998). Also
a significant effect of a functional polymorphism in the
promoter region of the serotonin transporter gene 5-
HTTLPR on the AEP intensity dependence has been
observed (Gallinat et al, 2003).
In the present study, the LD was employed as indicator of

the central serotonergic activity in humans to test the
following hypothesis: A low concentration of serum BDNF
is associated with a high LD indicating a low central
serotonergic activity. This hypothesis was investigated in
109 carefully selected healthy subjects, who were also have
been part of previously investigated samples (Lang et al,
2004; Gallinat et al, 2003).

SUBJECTS AND METHODS

Subjects

The study was approved by the ethics committee of the
University Hospital Benjamin-Franklin, Free University of
Berlin (Germany). All subjects were recruited by newspaper
advertisement and gave written informed consent. The
participants, who were of German descent, were interviewed
by a research psychiatrist with structured clinical interviews

(Mini-International Neuropsychiatric Interview, Sheehan
et al, 1998). Exclusion criteria were axis-I or axis-II
disorders, alcohol or illegal drug abuse, hearing disorder,
significant cardiovascular, hepatic, renal, gastrointestinal,
metabolic, or other systemic disease, concurrent psychiatric
or neurological illness, organic mental disorder, seizure
disorder, mental retardation, Parkinson’s disease, toxic
central nervous system depression, or any clinically relevant
abnormalities. For further description, see Gallinat et al
(2002).
Our study subjects were selected from a larger sample

(n¼ 376) on the basis of the availability of electrophysio-
logical data, BDNF serum concentrations, and NEO-FFI
personality inventory (Costa and McCrae, 1992). A total of
109 healthy unrelated volunteers (62 male, 47 female, age:
42.52713.1) were investigated. All participants were also
part of a sample (n¼ 118) reporting a correlation between
BDNF serum concentration and personality traits (Lang
et al, 2004) as well as part of a sample (n¼ 185) analysing
the association between allelic variants of the serotonin
transporter gene and the LD (Gallinat et al, 2003).

Measurement of LD

Recording took place in an electrically shielded and sound-
attenuated room adjacent to the recording apparatus
(Synamps, Neuroscans). Subjects were seated with open
eyes in a slightly reclined chair with a head rest and were
asked to look at the wall 3m in front of them. Evoked
responses were recorded with 32 electrodes referred to Cz.
Pure sinus tones (1000Hz, 40ms duration with 10ms rise-
and 10ms fall time, ISI randomized between 1800 and
2200ms) of five intensities (79, 87.5, 96, 104.5, 113 dB sound
pressure level) were presented binaurally in a pseudo-
randomized form by audiometry-headphones. Data were
collected with a sampling rate of 250Hz and an analogous
bandpass filter (0.16–50Hz). In all, 350ms prestimulus and
800ms poststimulus periods were evaluated for 100 sweeps
of every intensity (all together 500 sweeps). Before
averaging, the first five sweeps were excluded in order to
reduce short-term habituation effects. For artefact suppres-
sion, all trials were automatically excluded from averaging,
if the voltage exceeded7100 mV in any one of the 32
channels at any time point of the averaging period. For each
subject, the remaining sweeps were averaged separately
for the five stimulus intensities. At least 30 artefact-free
sweeps/intensity had to be averaged. N1-peaks (50–150ms)
and P2-peaks (100–250ms) were determined semiauto-
matically at the Fz- and Cz electrode (referred to linked-
mastoids). The LD was calculated as linear regression
slope with stimulus intensity as independent and
N1/P2-amplitude as dependent variable (Gallinat et al,
2000).

Measurement of BDNF Levels

Endogenous levels of BDNF were measured in the rethawed
serum samples using commercial ELISA kits in principle
according to the manufacturer’s instructions (Promega Inc.,
Mannheim, Germany), but adapted to the fluorometric
technique used also for nerve growth factor determination
(Hellweg et al, 2003) and described in detail previously
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(Hellweg et al, 1989). The BDNF content was expressed as
equivalents of recombinant human BDNF. The detection
limit of the assay was 1 pg/ml. Determinations of recovery,
specific and unspecific neurotrophin binding (the latter
against mouse IgG1 obtained from MOPC 21) involved
quadruplicate fluorescence determinations for each serum
sample (Hellweg et al, 2003).

Data Analysis

Kolmogorov–Smirnov test were employed to evaluate
whether BDNF level is a normally distributed trait. Gender
effects were tested using T-test for independent samples, age
effects were determined with Pearson’s correlation test.
BDNF was correlated with the LD using partial correlation
test (controlled for age). Results are presented as means7
one standard deviation. Analyses were computed using
statistical software (SPSS 11.5s). A p-value of po0.05 was
considered significant, while po0.10 was accepted in order
to detect trends.

RESULTS

BDNF serum levels in the healthy human population
amounted to 16.6977.7 ng/ml, the median amounted to
14.77 pg/ml. Kolmogorov–Smirnov test (D¼ 1.155, p¼
0.139) showed that the BDNF serum concentrations in our
sample were normally distributed. BDNF concentrations
correlated significantly with age (r¼ 0.200, p¼ 0.037), but
showed no gender differences (male 16.4077.6, female
17.0777.8 ng/ml; T¼ 0.451, df¼ 107, p¼ 0.653; T-Test).
Age was negatively correlated with the LD measured at

the Fz electrode (r¼�0.226; p¼ 0.018) as well as Cz
electrode (r¼�0.294; p¼ 0.002). No gender effects were
observed for the LD on both electrodes Fz (T¼ 0.857;
df¼ 107; p¼ 0.393) and Cz (T¼ 1.047; df¼ 107; p¼ 0.298).
Pearson correlation showed a significant negative corre-

lation between the BDNF concentrations and the LD
measured at Fz (r¼�0.259, p¼ 0.007; see Figure 1) and a
trend for the Cz electrode (r¼�0.185, p¼ 0.055). The
association between BDNF concentrations and the LD at Fz
was also significant when a partial correlation (controlled
for age) was performed (r¼�0.223, p¼ 0.020), while the
correlation at the Cz electrode controlled for age was not
significant (r¼�0.135, p¼ 0.165).
As previously reported (Lang et al, 2004; n¼ 118), a

significant negative correlation between BDNF serum
concentration and the depression-related personality trait
neuroticism was observed. This was also observed in the
present subsample (n¼ 109; r¼�0.193; p¼ 0.048; partial
correlation controlled for age), indicating a lower BDNF
concentration in subjects with a more depressed personality
trait. To further investigate the link between behavior and
serotonin, it was analyzed if more depressed individuals
have lower serotonergic activity, which would be indicated
by a higher LD. However, the correlation between neuroti-
cism score and LD did not show a significant result (Fz:
r¼ 0.121, p¼ 0.218; Cz: r¼ 0.100, p¼ 0.306; partial correla-
tion controlled for age).

DISCUSSION

In the present study, a negative correlation between BDNF
serum concentrations and LD measured at Fz (p¼ 0.007)
and a trend in the same direction measured at Cz
(p¼ 0.055) was observed in healthy subjects. This result is
compatible with the hypothesis that low concentrations of
BDNF are associated with low levels of central serotonergic
activity.
In line with this result, an augmentation of serotonergic

activity within various brain areas following infusion of
BDNF into the midbrain has been reported (Altar et al,
1994; Siuciak et al, 1996). Others observed a dose-
dependent reduction of the serotonin uptake in B lympho-
blasts after exposure to BDNF (Mössner et al, 2000). Apart
from immediate serotonergic effects, BDNF has been
reported to play a role in the development of serotonergic
neurons (Eaton et al, 1995) as well as sprouting of
serotonergic axons (Mamounas et al, 1995), which also
may affect serotonergic function as indicated by the LD.
Recent basic and clinical research studies have shown

evidence for a ‘neurotrophin hypothesis’ of depression
(Garza et al, 2004; Manji et al, 2003; Russo-Neustadt, 2003;
D’Sa and Duman, 2002; Duman et al, 1997). This hypothesis
may be integrated with the long hypothesized role of
monoamines in depression, since evidence for an associa-
tion of BDNF and serotonin has been presented. For
instance, animal studies reported that hippocampal BDNF
mRNA levels are significantly increased after physical
exercise, administered antidepressant medications and
electroconvulsive therapy (Russo-Neustadt, 2003; Russo-
Neustadt et al, 2000; Nibuya et al, 1995), while in turn,
physical exercise, antidepressants (Meeusen et al, 1996;
Chaouloff, 1994; Dey et al, 1992; Chaouloff et al, 1986), and
electroconvulsive therapy (Gur et al, 2002; Shen et al, 2001)

Figure 1 Correlation between BDNF serum concentration and the LD
(Fz electrode referred to linked mastoids) in 109 healthy subjects
(r¼�0.259, p¼ 0.007; Pearson).
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have been shown to increase serotonergic neurotransmis-
sion. Interestingly, behavioral antidepressant-like proper-
ties of BDNF in animal models have been reported
(Shirayama et al, 2002; Siuciak et al, 1997). This scenario
is compatible with recent investigations supporting the
serotonin deficit hypothesis in depression: A study employ-
ing a-methyl-tryptophan positron emission tomography
found evidence for a reduced serotonin synthesis in limbic
and paralimbic structures in patients with depression
compared to controls (Rosa-Neto et al, 2004).
In analogy with the neurotrophin hypothesis of depres-

sion, low BDNF serum levels were found to be associated
with high scores in depressive personality traits in healthy
subjects (Lang et al, 2004). In line with this, genetic studies
show that a BDNF-coding variant is associated with
neuroticism in the NEO personality inventory (Sen et al,
2003). Depressive personality is a trait which has also been
connected with low serotonergic neurotransmission (Sen
et al, 2004; Heinz et al, 2001). Interpreting the associations
between depressive personality trait and low BDNF
concentration as well as between low BDNF level and a
high LD, one would expect a positive correlation between
the LD and depressive personality trait. However, no
statistically significant correlation was found in the present
study. This may indicate the limitation of the depressive
personality trait as a model for affective disorders, since
others reported a higher LD in bipolar or unipolar
depressive patients (Friedman and Meares, 1979; Brocke
et al, 2000), while a lower LD was reported in withdrawn
alcohol-dependent patients with high harm avoidance
scores, a behavioral characteristic related to depressive
personality traits (Herrmann et al, 2002). Therefore, the
present results have to be interpreted with caution and
should not be generalized to the pathophysiology of
depression.
Moreover, one has to bear in mind that BDNF serum

changes in subjects with a strong LD or depressed subjects
could be an epiphenomenona as the exact mechanisms of
regulation of humoral BDNF levels are widely unknown.
Platelets, brain neurons, and vascular endothelial cells are
considered as candidate sources. A major source of the
serum BDNF are platelets, which bind, store, and release
BDNF upon activation and in response to coagulation
stimuli (Fujimura et al, 2002; Yamamoto and Gurney, 1990).
As platelets and neurons develop from a common
embryonic precursor in the neural crest (Pearse, 1980),
the peripheral BDNF concentration could possibly reflect
the central neurotransmission state as it was stated also for
serotonergic neurotransmission in platelets (Lesch et al,
1993). A parallel BDNF brain and serum situation is
underlined by the finding of Karege et al (2002), who
reported a positive correlation between brain and serum
BDNF levels in rats, which underwent similar changes
during maturation and aging processes and data showing
neurotrophic factors from the blood stream can cross the
blood–brain barrier under experimental conditions (Pan
et al, 1998). However there are also conflicting results,
showing that neurotrophins do not cross the blood–brain
barrier (Pardridge, 2002).
Although several lines of evidence indicate an association

between LD and serotonin (see Introduction), animal
investigations reported also some effects of the dopamine

and choline system (but not noradrenalin) on the LD
(Juckel et al, 1997). Therefore, the moderate correlation
between LD and BDNF serum concentration should be
viewed with caution. However, the link between LD and
serotonin is more consistent and also compatible with a
recent animal study showing a high correlation (r¼�0.80)
between the N1/P2-amplitude and the 5-HT concentration
in the auditory cortex (Manjarrez et al, 2001).
In conclusion, the present results are compatible with the

hypothesis of enhanced serotonergic neurotransmission in
humans with high BDNF serum concentrations. A decrease
in serum BDNF levels might reflect low serotonergic
neurotransmission and thereby influence the cascade, which
may be also relevant in the pathophysiology of depression.
However, the results have to be interpreted with caution
since the significance is moderate. Moreover, a replication
in an independent sample has to be performed.
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