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Alterations in Behavioral Responses to a Cholinergic Agonist

in Post-Pubertal Rats with Neonatal Ventral Hippocampal
Lesions: Relationship to Changes in Muscarinic Receptor
Levels

Francois Laplante'*?, Osamu Nakagawasai', Lalit K Srivastava' and Rémi Quirion* '

'Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; *Department of Pharmacology/
Therapeutics, McGill University, Montréal, Quebec, Canada

Excitotoxic neonatal ventral hippocampal (NVH) lesion in rats is considered as a putative animal model of schizophrenia as lesioned
animals show characteristic post-pubertal emergence of neurochemical and behavioral abnormalities analogous to some of those seen in
this disease. Converging evidence points to the involvement of central cholinergic system in this neuropsychiatric disorder, and our
previous studies have suggested that cholinergic neurotransmission may be altered in post-pubertal NVH lesioned rats. We investigated
here muscarinic receptor reactivity in NVH lesioned animals by measuring the effects of the muscarinic receptor agonist oxotremorine
on physiological responses known to be modulated by these receptors such as body temperature, salivation, tremor, pain, and prepulse
inhibition of the acoustic startle (PPI). Quantitative receptor autoradiography revealed that post-pubertal NVH lesioned animals display
increased levels of [*H]pirenzepine/M-like and [PH]JAFDX-384/M,-like receptor binding sites in the striatum, nucleus accumbens, and in
subareas of the dorsal hippocampus. Moreover, in response to the systemic administration of oxotremorine (0.25 mg/kg), post-pubertal
NVH lesioned rats exhibited increases in salivation and tremor, and a greater reduction in body temperature compared to sham control
animals. Increases in the hot-plate latency were also observed suggesting enhanced antinociceptive effects of oxotremorine in post-
pubertal NVH lesioned animals. Finally, oxotremorine (0.1 and 0.25 mg/kg) disrupted PPl in post-pubertal sham control rats while the
muscarinic receptor antagonist biperiden (0.5 and 1.0 mg/kg) normalized this behavior in NVH lesioned rats. Taken together, these
findings reveal that post-pubertal NVH lesioned rats display enhanced muscarinic receptor responsiveness, which may relate to some

behavioral abnormalities reported in this animal model.

INTRODUCTION

Excitotoxic neonatal ventral hippocampus (NVH) lesions in
rats have been proposed as a putative animal model of
schizophrenia as these animals display post-pubertal
neurochemical and behavioral abnormalities analogous to
some symptoms seen in this neuropsychiatric disorders (for
reviews see Lipska and Weinberger, 2000; Marcotte et al,
2001). For example, post-pubertal NVH lesioned animals
are hyper-reactive to stress and amphetamine, display
deficits in prepulse inhibition (PPI) of startle and latent
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inhibition, and impaired social behavior and working
memory (Becker et al, 1999; Lipska et al, 1993, 1995,
2002; Sams-Dodd et al, 1997). NVH lesions also induce a
number of morphological (Bernstein et al, 1999) and
physiological (O’Donnell et al, 2002; Schroeder et al,
1999) changes in the prefrontal cortex (PFC) suggesting
the neurodevelopmental reorganization of PFC circuitry.

In post-pubertal NVH lesioned animals, we previously
demonstrated greater increases in prefrontal cortical
acetylcholine (ACh) release in response to pharmacological
stimulation of dopamine (DA) D;-like receptors (Laplante
et al, 2004a) and in response to an acute tail pinch stressor
(Laplante et al, 2004b). We also reported on the increases in
M;-like receptor binding sites in the infralimbic area of the
PFC in post-pubertal NVH lesioned rats (Laplante et al,
2004a). These data are suggestive of an altered central
cholinergic neurotransmission, which could possibly ac-
count, at least in part, for some of the abnormal behaviors
described in this animal model.



Aberrant activities of central cholinergic neurotransmis-
sion have been suggested to be involved in major
neuropsychiatric disorders including schizophrenia (Sarter,
1994; Sarter and Bruno, 1999) and has been proposed to be
implicated in the pathogenesis of depression and stress
altered response (Overstreet et al, 1996). Moreover,
muscarinic receptor hyperreactivity is suspected to be
responsible, at least in part, for the negative symptoms
occurring in schizophrenic patients (Tandon et al, 1991,
1993). In accordance with this hypothesis, many studies
have reported alterations in cortical and subcortical
muscarinic and nicotinic receptor binding sites in schizo-
phrenic brains (for a review see Hyde and Crook, 2001).
Moreover, atypical antipsychotics such as clozapine and
olanzapine are potent muscarinic receptor antagonists
(Bolden et al, 1991; Bymaster et al, 1996).

Besides its well-known roles in attention, learning, and
memory (Everitt and Robbins, 1997; Sarter and Bruno,
1997), central cholinergic systems, through the activation of
various muscarinic receptor subtypes, regulate numerous
physiological processes including body temperature, pain
threshold, salivation, and tremor (Dilsaver and Alessi, 1988;
Gainetdinov et al, 1999; Gomeza et al, 1999). In the present
study, we investigated muscarinic receptors binding sites
(M; and M,-like) in limbic areas of the central nervous
system in NVH lesioned rats. Further, using the nonselec-
tive muscarinic receptor agonist oxotremorine, we studied
the reactivity of muscarinic receptors in physiological
functions considered to be dependable measures of the
responsiveness of central muscarinic receptors (Dilsaver
and Alessi, 1988; Gainetdinov et al, 1999; Gomeza et al,
1999). Finally, as PPI of acoustic startle has also been shown
to be modulated by muscarinic receptors (Jones and
Shannon, 2000; Wu et al, 1993), we investigated the effects
of oxotremorine and the muscarinic receptor antagonist
biperiden on this behavior in NVH lesioned rats. Our
results suggest that post-pubertal NVH lesioned rats are
hyper-sensitive to the stimulation of muscarinic receptors.
These findings may be functionally relevant to some
behavioral deficits seen in this animal model.

MATERIALS AND METHODS

Neonatal ventral hippocampal lesions

Lesions of the ventral hippocampus in pups were performed
as previously described (Flores et al, 1996). Pregnant
Sprague-Dawley rats at 15 days of gestation were obtained
from Charles River Canada (St-Constant, Québec, Canada),
housed individually in 12-h light/dark cycle rooms, and fed
ad libidum. Animal care and surgery were carried out
according to the guidelines approved by the McGill
University Animal Care Committee and the Canadian
Council for Animal Care.

On postnatal day 7 (PD 7) male pups (14-17g) within
each litter (4-9 males/litter) were randomly divided to sham
or lesion status. Pups were anesthetized by hypothermia by
placing them on ice for 10-20 min and were immobilized on
a platform fixed on a stereotaxic frame. An incision in the
skin overlaying the skull was made and two 1-mm holes
were drilled. A needle connected to an infusion pump
through a Hamilton syringe was lowered into each ventral
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hippocampi at coordinates: AP —3.0 mm ML + 3.5 relative
to bregma and —5.0 relative to the surface of the skull.
Ibotenic acid (0.3 and 10 pg/pl; Sigma, Chemical Co, St-
Louis, MO) in 0.15M phosphate buffer saline (PBS) pH 7.4
was infused bilaterally at a flow rate of 0.15 ul/min. Sham
operated animals received the same volume of PBS. The
needle was withdrawn 2min after completion of the
infusion. Pups were placed under a warming lamp and
then returned to their mothers. On PD 21, rats were weaned
and grouped 2-3 per cage. Experiments were performed on
prepubertal (between PD 32 and 40) and post-pubertal
(between PD 56 and 70) animals.

Quantitative Receptor Autoradiography

Two cohorts of animals from both experimental groups
were killed by decapitation: one at PD 35 (prepubertal) and
the other at PD 56 (post-pubertal). Brains were removed
and frozen in 2-methylbutane at —40°C and stored at
—80°C. Coronal brain sections (20 um) were cut at —18°C
on a cryostat, thaw-mounted on gelatin-coated slides, and
stored at —80°C until use.

Muscarinic M;- and M,-like receptor binding sites were
visualized using [*H]pirenzepine (79.3 Ci/mmol) and
[PH]AFDX-384 (137.0 Ci/mmol) (New England Nuclear,
Boston MA), respectively, as described elsewhere (Vaucher
et al, 2002). Brain sections were preincubated for 10 min in
Krebs buffer (NaCl 120 mM; KCl 4.7 mM; CaCl, 2.5 mM;
KH,PO, 1.2 mM; MgS0O, 1.2 mM; glucose 5.6 mM; NaHCO;
25mM, pH 7.4) at room temperature before a 60-min
incubation into the same buffer containing either 10nM
[’H]pirenzepine or 2nM [*H]AFDX-384. Consecutive sec-
tions were also incubated in the presence of atropine (1 pM;
Sigma RBI) to ascertain the specificity of the labelling.
Sections were rinsed three times (4 min each) in ice-cold
Tris-HCI buffer (50 mM, pH 7.4) followed by a rapid dip in
ice cold distilled water to removed buffer salts and sections
were air dried. Autoradiograms were generated by apposing
sections alongside tritium standards to tritium-sensitive
films (Amersham, Oakville, ON) for 15 days for [°H]pir-
enzepine binding and 3 weeks for [’H]AFDX-384 binding.
Films were developed as previously described (Quirion et al,
1981) and specific labelling quantified (fmol/mg tissues wet
weight) using a computer-assisted microdensitometric
image analysing system (MCID System, Imaging Research
Inc., St Catharines, Ontario, Canada). For both radioligands,
quantification was performed bilaterally using four con-
secutive sections per animal. Sections were anatomically
matched between animals by referring to Paxinos and
Watson’s Brain Atlas (1982).

Functional Measures of Muscarinic Receptor
Responsiveness

Effect of oxotremorine on salivation, tremor, and
hypothermia. Rats from each group (sham and NVH
lesion) were injected intraperitoneally with the nonselective
muscarinic receptor agonist oxotremorine (0.25mg/kg;
Sigma RBI, Oakville, ON). Body temperature, salivation,
and tremor were assessed before the treatment and at
15min intervals for 120min after the injection. Body
temperature was measured between 12:00 and 14:00 with
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rectal thermometer (FHC Bowdoinham, ME). Salivation and
tremor were scored simultaneously in the same animals
according to criteria described previously (Gainetdinov et al,
1999). Salivation was scored as 0=no salivation;
1 =moisture on face only; and 2 =moisture on face and
chest. Tremor was scored as 0 =no tremor; 1 = intermittent
head and body tremor; 2 = continuous all body tremor.

Antinociceptive effect of oxotremorine. The antinocicep-
tive effect of oxotremorine was investigated using the hot
plate test as described by Spreekmeester and Rochford
(2000). The hot-splate apparatus was made of
20.3 x 38.1 x 20.3 cm” clear plexiglas chamber mounted on
a 0.6-cm thick, 26.7 x 30.5cm’ piece of sheet metal. A
wooden lid with nine 1 cm air holes was hinged to the top of
the hot plate to prevent animals from escaping. The plate
temperature was set to 55°C and controlled by immersing
the sheet metal into a water bath heated by a Haake E2
Immersion/Open Bath Circulator. Animals were placed on
the hot plate and we measured the time required for back
paw removal before and 30min after the injection of
oxotremorine. The maximal time allowed for paw removal
was 30s. The effect of oxotremorine was determined by
calculating the percent change between latency 30-min
postinjection (L30) and latency prior to injection (LO)
according to the formula (L30-L0)/L0 x 100.

PPJ of the acoustic startle response. Tests were conducted
using SR-LAB system (SR-LAB, San Diego Instruments, San
Diego, CA, USA) that comprised four sound-attenuating
chambers each equipped with a cylindrical Plexiglas animal
enclosure (length, 16 cm; inner diameter, 8.2 cm). Ventila-
tion was provided by a small electric fan that also generated
a 70-dB background noise. Tone pulses were presented by a
speaker positioned 24cm directly above the animal
enclosure. A piezoelectric accelerometer affixed to the
animal enclosure frame was used to detect and transduce
motion resulting from the animal’s response. Tone pulse
parameters were controlled by a computer using a
commercial software package (SR-LAB) and interface
assembly that also digitized (0-4095), rectified, and
recorded stabilimeter readings.

Measures of both acoustic startle response (ASR) and PPI
were obtained in a single session as described by Brake et al
(2000) with minor modifications. We investigated the
effects of oxotremorine (0.1 and 0.25mg/kg, ip.) and
biperiden hydrochloride (0.5 and 1.0 mg/kg, i.p.) (Wako
Pure Chemial Industied Ltd, Osaka, Japan), a muscarinic
receptor antagonist with preferential affinity for M;
receptor (Eltze and Figala, 1988). The tested doses are
below the minimal dose (4mg/kg) required to produce
memory impairment in rats (Roldan et al, 1997). At 20 min
after drug injection, animals were placed in the plexiglas
enclosure and allowed to acclimatize to the environment for
5min before being tested during 37 discrete trials. On the
first two trials, the magnitude of the ASR to a 50-ms
duration of 120dB tone was measured. These first two
startle tones were presented in order to habituate the
animals to the testing procedure. Therefore, the ASR
magnitude of these two trials was omitted from the
statistical analysis of the mean ASR amplitude. On the
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subsequent 35 trials, the startle tone was either presented
alone or 100ms after presentation of a 30-ms duration
prepulse. Prepulse intensity ranged from 6 to 15dB above
background noise and was varied randomly between trials
in 3dB steps. Measures were taken at each of the four
prepulse intensities on five trials; animals were randomly
presented with the startle tone alone during the other 10
trials. The same stimulus condition was never presented on
more than two consecutive trials. The interval between each
trial was programmed to a variable time schedule with an
average duration of 15s (range 5-30s). A measure of startle
response amplitude was derived from the mean of 100
digitized data points collected from stimulus onset at a rate
of 1kHz. Prepulse effectiveness in suppressing the startle
response was expressed as a percentage based on the mean
amplitude of responses to the startle tone alone (10 startle
tones) relative to those recorded under the four prepulse
conditions (5 startle tones/condition): % PPI = (startle
alone—startle in the presence of prepulse)/startle
alone) x 100%.

Histology. To assess the size and location of the lesion,
adult rats were killed by decapitation and brains were
removed and frozen in 2-methylbutane at —40°C and then
stored at —80°C. Coronal sections (20 um) were mounted
onto gelatin-coated slides and stained with cresyl violet.
Lesion size was examined under light microscopy. As shown
in Figure 1, bilateral damage including neuronal loss,
atrophy and cavitation of the ventral hippocampus was
observed in ibotenic acid-treated rats. Animals exhibiting
damage in the dorsal half of the hippocampus, thalamus or
cortex were excluded from the study. Sham control animals
did not show any obvious damage in hippocampal areas.

Statistical analysis. For quantitative receptor autoradio-
graphy, significant differences between experimental groups
were determined by t-test. Data on salivation and tremor
were analyzed by repeated measures two-way analysis of
variance (ANOVA) with lesion as independent factor and
time after injection as repeated measures. Data on body

Figure | Histological representation of a coronal section of an adult rat
brain stained with cresyl violet demonstrating the structural damage of the
ventral hippocampus (arrow) resulting from the neonatal lesion. Scale:
2 mm.



temperature were analyzed by repeated measures three-way
ANOVA with lesion and drug treatment as independent
factors and time after injection as repeated measures. The
temperature differences were analyzed by two-tailed T test.
Hot plate data were analyzed by two-way ANOVA with
lesion and drug treatment as independent factors. Post hoc
Bonferonni tests were conducted when appropriate. A one-
way ANOVA with Dunnett test as post hoc, with sham saline
group as reference, was used to assess the magnitude of
drug effects on the ASR. The effects of oxotremorine and
biperiden on PPI were analyzed separately by three-way
repeated-measures ANOVA with lesion and drug as
independent factors and prepulse intensity as repeated
measures. Post hoc Bonferonni tests were conducted when
appropriate.

Responses to a cholinergic agonist in rats with NVH lesions
F Laplante et al

g

RESULTS
M, and M,-Like Muscarinic Receptor Ligand Binding

Striatal areas display high levels of specific [ H]pirenzepine
and [’H]AFDX-384 binding (Figure 2a, b). Differences in
the amount of specific binding between control and NVH
lesioned rats are not obvious solely on the basis of a visual
evaluation of autoradiograms, but quantitative analyses
revealed increases in M;-like muscarinic receptor binding
in the nucleus accumbens (28%; f()=3.10, p=0.015) and
caudate-putamen (26%; tg) =3.10, p=0.015) as well as
significant increases in M,-like muscarinic receptor binding
in the nucleus accumbens (20%; f()=2.59, p=0.032) and
caudate-putamen (24%; ts =3.60, p=0.007) in post-
pubertal NVH lesioned rats (Figure 2c, d). No significant

M,-like b M,-like
Caud Put
Nuc Acc
Sham NVH lesion Sham NVH lesion
c M,ike d M,-like
300 Post-pubertal Post-pubertal
100 4 -
— *
£ ) - 3% -
o @& 200 8g 717
= NS o o )
o5 o = o =
§_§ £ == = 8L 2 s0 -
» ez a< £
T g 100 g
ROESS — 25 4
0 0
Nuc Acc Caud Put Nuc Acc Caud Put
e M -like f M,-like
P bertal P |
860 = repube 565 = repuberta
o —_— —
=) o
Q@ » 2004 O e @
EHS - £8%
o D e
§.-‘-‘ E i".,:" g 50 o
wos 7] E.‘g
T E 100 A 3 =
o = 25 4
0 0
Nuc Acc Caud Put Nuc Acc Caud Put
[] sham [l NVH lesion

Figure 2 Quantitative receptor autoradiography of muscarinic binding sites in the striatum. Specific [*H]pirenzepine (M-like) and [H]JAFDX 384 (M,-
Iike) represented close to 100% total binding. (a, b) Representative hemisections of autoradiograms showing that these two receptor classes are expressed
in all subareas of the striatum in both sham and N\/H lesioned rats. [*H]pirenzepine/M-like binding sites were quantified in post- (c) and prepubertal (e)
animals. Same quantification pattern for specific [PHJAFDX 384/Ms-like binding sites (d, f). Data represent mean +SEM, n=5-7 in each group. *p<0.05,
**p <0.01. Caud Put, caudate putamen; Nuc Acc, nucleus accumbens.
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Figure 3 Quantitative receptor autoradiography of muscarinic binding sites in the dorsal hippocampus. Specific [*H]pirenzepine (M-like) and [*HJAFDX
384 (M,-like) represented close to 100% total binding. (a, b) Representative hemisections of autoradiograms showing that these two receptor classes are
expressed in all subareas of the dorsal hippocampus in sham and NVH lesioned rats. [*H]pirenzepine/M-like binding sites were quantified in post- (c) and
prepubertal () animals. Same quantification pattern for specific [PHJAFDX 384/M,-like binding sites (d, f). Data represent mean +SEM, n=5-7 in each
group. *»<0.001. Cal, Ca2, Ca3, subfields of the Ammon’s hormn of the hippocampus. DG, dentate gyrus.

differences in binding were observed in prepubertal NVH
lesioned rats (Figure 2e, f). Specific [’H]pirenzepine and
[*H]AFDX-384 binding is also seen in the dorsal hippo-
campus (Figure 3a, b). Significant increases in M;-like
receptor binding are observed in the CA2 (41%; t(g) = 6.76,
p=0.0001) and CA3 (29%; t() = 5.82, p =0.0004) subfields
as well as in the dentate gyrus (39%; t(s) = 8,56, p<0.0001)
of post-pubertal NVH lesioned rats (Figure 3c). The level of
M,-like sites was significantly increased (20%; t(;3) =2.54,
p=0.025) only in the dentate gyrus (Figure 3d) of post-
pubertal NVH lesioned rats. As in the striatum, no
significant differences in muscarinic receptor binding were
observed in the dorsal hippocampus of prepubertal NVH
lesioned rats (Figure 3e, f). Under the experimental
conditions used in the present study, it is not possible to
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ascertain if changes in specific binding relate to alterations
in affinity (Kd) and/or maximal binding capacity (Bmax).

Effect of Oxotremorine

The administration of oxotremorine (0.25mg/kgip) in-
duced salivation in both post-pubertal sham and NVH
lesioned rats. However, the effect was significantly greater
in post-pubertal NVH lesioned rats (Figure 4a). ANOVA
revealed a significant main effect of time (F,150)=43.2;
p<0.0001), significant main effect of lesion (F(;, ;50) =4.58;
p=0.041) and significant interaction (F(, 150) = 2.40;
p=0.029). The oxotremorine injection also induced tremor
in both groups. Again, the tremorogenic effect of oxotre-
morine was more pronounced in post-pubertal NVH
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Figure 4 Salivation and tremor in response to the systemic injection of oxotremorine (OXO; 0.25 mg/kg) in post-pubertal (a) and (b) and prepubertal (c)
and (d) NVH lesioned and sham control rats. Data represent means +SEM (n= |6 in each group for post-pubertal and n= |0 for prepubertal). Injection of
saline produced no effect on these two responses. Post hoc analysis revealed significant differences between groups. *p <0.05; **p <0.005; ***p <0.0001.

lesioned rats (Figure 4b). ANOVA revealed a significant
main effect of time (Fs,150) =30.1; p<0.0001), significant
main effect of lesion (F(; 150 =19.1; p<0.0001) and
significant interaction (F, 150y = 11.02; p<0.0001). In pre-
pubertal NVH lesioned animals, the same dose of oxotre-
morine failed to induce notable differences in salivation and
tremor between groups (Figure 4c, d). The effect of
oxotremorine on salivation and tremor was worn out 60-
min postinjection in all rats.

Muscarinic agonists are known to induce hypothermia.
Post-pubertal NVH lesioned rats exhibited a significant
lower body temperature compared to sham control follow-
ing the injection of oxotremorine (Figure 5a). ANOVA
revealed a significant main effect of time (F,360) = 14.1;
Pp<0.0001), significant main effect of lesion (F(;, 360) = 4.04;
p=0.049), significant main effect of drug treatment
(F@1,360)=90.6; p<<0.0001), significant time x lesion inter-
action (F, 360y =4.52; p=0.0002), significant time x drug
treatment interaction (F, 360y =40.5; p<0.0001). By com-
paring body temperatures pre, as well as 30 and 45 min,
postinjection in each animal, we observed that oxotremor-
ine triggered a significantly greater reduction in post-
pubertal NVH lesioned rats (Figure 5b). Prepubertal NVH
lesioned rats did not exhibit significantly lower body
temperatures compared to sham control animals following
the injection of oxotremorine (Figure 5c). Accordingly,
ANOVA revealed a significant main effect of time
(F,192)=22.6; p<0.0001), significant main effect of

drug treatment (F(;,192)=26.0; p<0.0001), but nonsignifi-
cant main effect of lesion (F(19p=0.14; p=0.71) and
nonsignificant  drug  treatment x lesion  interaction
(F(l, 192) = 07]., p = 041)

In the hot plate analgesia task, we observed that 30 min
after administration of oxotremorine (0.1 and 0.25 mg/kg),
latency to remove the back paw was significantly increased,
in a dose-dependent manner, in post-pubertal NVH
lesioned rats (Figure 6a). ANOVA revealed a significant
main effect of lesion (F(;,s7) =4.80; p=0.033), a significant
main effect of drug treatment (F,, 57y =3.26; p =0.046) and
significant interaction (F(y,s7)=4.09; p=10.022). In prepu-
bertal NVH rats, oxotremorine (0.25mg/kg) failed to
differentially affect back paw’s removal (Figure 6b). ANOVA
revealed a nonsignificant main effect of lesion
(F,35 =0.25; p=0.61), significant main effect of drug
treatment (F(; 35 =5.32; p=0.027) and nonsignificant
interaction (F(;, 35y =1.63; p=0.21).

PPI of the Acoustic Startle

The effects of oxotremorine and biperiden on the mean ASR
magnitude are shown in Figure 7a. ANOVA revealed
nonsignificant main effect of lesion (F(,101)=0.17;
p=0.68), significant main effect of drug treatment
(F4,101)=9.82; p<0.0001) and nonsignificant interaction
(F@1,101)=0.30; p=10.88). Post-pubertal NVH lesioned rats
exhibited significant reduction in PPI at all prepulse
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Figure 5 Body temperature (a) measured during a 2-h period following
the injection of oxotremorine (OXO; 0.25mg/kg) in post-pubertal NVH
lesioned and sham control rats. (b) Change in body temperature 30 and
45-min postinjection compared to preinjection (time 0). (c) Body
temperature measured during a 2-h period after the injection of
oxotremorine (OXO; 0.25 mg/kg) in prepubertal NVH lesioned and sham
control rats. Data represent mean+SEM (n= 16 in each group for post-
pubertal and n=8-10 for prepubertal). Two-tailed t-test revealed
significant differences between groups. *p <0.05.

intensities tested here (p <0.05) (Figure 7b, ¢) in accordance
with previous studies (Le Pen et al, 2003; Lipska et al, 1995).
The effects of oxotremorine (0.1 and 0.25 mg/kg) on PPI are
shown in Figure 7b. Three-way ANOVA revealed a
significant main effect of NVH lesion (F(y, 05y =22.83;
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Figure 6 Variation in latency of back paw removal from the hot plate
30 min following the injection of oxotremorine (OXO; 0,1 and 0.25 mg/kg)
in (a) post and (b) prepubertal NVH lesioned and sham control rats. Data
represent mean+SEM (n=10-12 in each group). Post hoc revealed
significant differences of the drug effect between the experimental groups.
#p<0.05; **p<001I.

p<0.0001), significant main effect of drug treatment
(F(2,108) =3.26; p=0.045), significant main effect of pre-
pulse intensity (Fs, 98y =44.96; p<0.0001) and significant
drug x NVH lesion interaction (F(y j05)=3.31; p=0.043).
Post hoc test revealed that oxotremorine dose-dependently
disrupted PPI in sham control animals for all prepulse
intensities tested. On the other hand, oxotremorine failed to
affect PPI in post-pubertal NVH lesioned rats (Figure 7b).

The effects of biperiden (0.5 and 1.0 mg/kg) on PPI are
summarized in Figure 7c. Three-way ANOVA revealed a
significant main effect of NVH lesion (F(j, 65 =22.8;
p<0.0001), significant main effect of drug treatment
(F2,165)=5.08; p=10.010), significant main effect of pre-
pulse intensity (Fs, 165y =41.3; p<0.0001), and a significant
drug x NVH lesion interaction (F,, ;65)=3.85; p=0.027).
Post hoc test revealed that biperiden dose-dependently
improved PPI deficit in post-pubertal NVH lesioned rats for
all prepulse intensities tested while produced no effect in
sham control animals (Figure 7c).

DISCUSSION

In the present study, we have demonstrated that post-
pubertal NVH lesioned rats exhibit increased levels of both
M, and M,-like muscarinic receptor binding sites in various
subareas of the striatum and dorsal hippocampus. Recently,
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Figure 7 Effects of peripheral administration of oxotremorine (OXO;
0.1 and 0.25mg/kg) and biperiden (0.5 and 1.0 mg/kg) on acoustic startle
response (a). Post hoc analysis revealed no significant drug effects on the
mean acoustic startle response magnitude (n=7-12 per group). (b)
Peripheral administration of oxotremorine (OXO; 0.1 and 0.25mg/kg)
dose-dependently reduced prepulse inhibition (PPI) in control rats as
compared with saline injection. *p<0.05; **p <00l (h=12 in each
group). (c) Peripheral administration of biperiden (0.5 and 1.0 mg/kg)
increased PPl in post-pubertal NVH lesioned rats. *p <0.05 (n=9—-12 in
each group).

we reported increases in [*H]pirenzepine/M;-like muscari-
nic receptor binding sites in the infralimbic areas of the PFC
in post-pubertal NVH lesioned rats (Laplante et al, 2004a).
These increases are likely to be functionally relevant as
post-pubertal NVH lesioned rats displayed enhanced
functional and behavioral responses to systemic adminis-
tration of the muscarinic agonist, oxotremorine. Indeed,
classical responses related to the stimulation of muscarinic
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receptors such as hypothermia, salivation, and tremor are
enhanced in post-pubertal NVH lesioned rats. Oxotremor-
ine also increased latency of back paw removal on the hot
plate suggesting an enhanced antinociceptive response. We
have previously suggested that prefrontal cortical choliner-
gic responsiveness is altered in post-pubertal NVH lesioned
rats on the basis of greater enhancement in cortical ACh
release in response to the administration of D;-like receptor
agonist (Laplante et al, 2004a) or tail pinch stressor
(Laplante et al, 2004b). The present data extend these
earlier results and reveal functional hypersensitivity of
muscarinic receptors in post-pubertal NVH lesioned
animals.

Interestingly, increased levels of muscarinic receptors and
the enhanced effects of oxotremorine in salivation, tremor,
hypothermia and anticociception were only seen in post-
pubertal NVH animals. This is consistent with other
neurochemical and behavioral changes that are primarily
seen in post-pubertal lesioned animals (Flores et al, 1996;
Laplante et al, 2004a; Lipska et al, 1993, 1995; O’Donnell
et al, 2002; Schroeder et al, 1999). Thus, these data suggest
that NVH lesions result in developmental alterations in
central cholinergic neurotransmission.

Oxotremorine decreased PPI in sham animals suggesting
that excessive stimulation of muscarinic receptors can
impair PPI. However, oxotremorine failed to affect PPI in
NVH lesioned rats, which can be explained by the existing
lower level of PPI in this animal model. Therefore, further
stimulation of muscarinic receptor by oxotremorine did not
produce additional deficit. An earlier study reported that
the muscarinic receptor agonist pilocarpine was able to
impair PPI in normal rats (Stanhope et al, 2001). In
contrast, another report failed to demonstrate a disrupting
effect of oxotremorine (0.01-0.3 mg/kg) on PPI in normal
rats (Jones and Shannon, 2000). This equivocal result is
likely explained by the use of differential testing conditions
(background noise: 50dB, startle pulse: 106dB, and
prepulse intensity: 77 dB).

The muscarinic receptor antagonist biperiden signifi-
cantly improved PPI impairment in post-pubertal NVH
lesioned rats. However, biperiden produced no significant
effect in sham control animals, in accordance with a
previous study (Jones and Shannon, 2000). PPI is regulated
by neuronal activity in a set of brain structures that
comprise limbic and mesolimbic cortico-striato-pallido-
pontine circuitry (Klarner et al, 1998). Therefore, it is
possible that increased muscarinic receptor binding sites in
some limbic and striatal areas and enhanced functional
responses are involved in PPI deficits in post-pubertal NVH
lesioned rat, and that these deficits can be normalized by
decreasing the activity of muscarinic receptors. Interest-
ingly, a previous study has shown that another muscarinic
antagonist scopolamine improved kainate-induced PPI
disruption in rats (Koch, 1996). These data might be
relevant to schizophrenia as well since biperiden was
previously shown to improve negative symptoms in
schizophrenic patients (Tandon et al, 1991).

Oxotremorine-induced salivation, tremor, hypothermia,
and antinociception are considered as dependable measures
of the responsiveness of muscarinic receptors in the central
nervous system (Dilsaver and Alessi, 1988; Gainetdinov et al,
1999; Gomeza et al, 1999). The effect of muscarinic receptor
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agonist on salivation is though to be predominantly
mediated by glandular receptors (Caulfield, 1993). However,
salivation is also regulated by CNS muscarinic receptors,
which remain to be identified (Sanchez and Meier, 1993).
Regarding tremor, it was demonstrated that intrastriatal
administration of muscarinic agonists produced tremor
(Connor et al, 1966a,b), supporting the involvement of
striatal muscarinic receptors in that process. Accordingly,
the increased striatal level of muscarinic receptors in post-
pubertal NVH lesioned rats is consistent with the enhanced
oxotremorine-induced tremor. Muscarinic receptors located
in hypothalamic thermoregulatory centers contribute pre-
dominantly to the regulation of body temperature (Myers,
1980), while muscarinic receptors in the dorsal horn of the
spinal cord and the thalamus were shown to reduce pain
perception (Harte et al, 2004; Iwamoto and Marion, 1993).

While limbic and striatal areas, may not directly control
salivation, body temperature, and pain perception, there is
evidence that some of these structures could indirectly
participate in these processes. For example, alterations in
the PFC are believed to be primarily responsible for the
emergence of behavioral and physiological abnormalities
observed in the NVH lesioned rats (Lipska et al, 1998;
O’Donnell et al, 2002). Anatomical evidence from rats and
monkeys demonstrated that some PFC neurons project to
several brain areas notably the striatum, thalamus,
hypothalamus, and brainstem, notably to the nucleus of
solitary tract (Chiba et al, 2001; Van Eden and Buijs, 2000;
Vertes, 2004). Accordingly, the PFC, particularly its infra-
limbic area, can regulate visceral/autonomic functions
including cardiovascular response, respiration, gastrointest-
inal activity, and thermoregulation (Neafsey, 1990). Infu-
sions of the muscarinic receptor agonist carbachol in the
PFC were able to enhance cardioacceleratory responses to
aversive stimuli (Berntson et al, 1996; Hart et al, 1999),
demonstrating that cholinergic neurotransmission in this
cortical area may be involved in the regulation of some
autonomic functions in reaction to stress and anxiety.
Interestingly, cardiovascular stress responses in rats were
shown to be reduced by atypical antipsychotic drugs (eg
clozapine), which display high affinity for muscarinic
receptors but not by the typical antipsychotic, haloperidol
(Van Den Buuse, 2003). In addition, PFC neurons project to
the spinal cord (Van Eden and Buijs, 2000) where they can
influence nociception. For example, the stimulation of the
PFC was shown to reduce behavioral response to noxious
stimuli (Hardy and Haigler, 1985; Hardy, 1985). Since
infralimbic PFC M, receptors can mediate anxiety responses
(Wall et al, 2001), increased M, binding in this cortical area
in post-pubertal NVH lesioned rats (Laplante et al, 2004a)
may result in increased ACh-mediated signaling in the PFC
leading to activated visceral/autonomic functions in these
animals.

While data from an animal model may not be directly
extrapolated to human schizophrenia, a disorder of
predominantly psychological symptoms, it is of interest
that in accordance with dysregulation in PFC activities
reported in schizophrenia (Callicott, 2003; Weinberger et al,
2001; Yang et al, 1999), a wide variety of somatic
manifestations have been also reported, particularly in the
older literature. Some of the physical symptoms of
schizophrenia described by Kraepelin (1919) included
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diminished sensitivity to pain, increased secretion of saliva,
tremor, seizures, and lower body temperature (Kraepelin,
1919). In addition, recent studies have reported that
schizophrenic patients often develop thermoregulatory
disturbances (Shiloh et al, 2001) and have increased pain
threshold (Dworkin, 1994; Lautenbacher and Krieg, 1994).

In the present study, M;- and M,-like muscarinic
receptors binding was increased in the striatal and
hippocampal regions of post-pubertal NVH lesioned rats.
These results are in contrast with most post mortem and
SPECT studies reporting decreased levels of muscarinic
receptors in the PFC, striatum and hippocampus of
schizophrenic patients (Crook et al, 1999, 2000, 2001; Dean
et al, 1996; Raedler et al, 2003). The decreased levels of
muscarinic receptors in schizophrenia may reflect a down-
regulation in response to increased ACh efflux associated
with increased dopaminergic neurotransmission (Crook
et al, 2001) or in response to long-term neuroleptic
treatments. A similar phenomenon may not occur in
drug-naive NVH lesioned rats. Moreover, we have shown
that basal levels of PFC ACh release are not altered in post-
pubertal NVH lesioned rats compared to sham littermates
(Laplante et al, 2004a,b). However, NVH lesions affect the
development of neural circuitry implicated in stress
response (Lipska et al, 1993) resulting into enhanced DA
neurotransmission (Flores et al, 1996; Lipska et al, 1993;
O’Donnell et al, 2002). The increased responsiveness of
cholinergic neurotransmissiom may reflect a compensatory
mechanism to sensitized DA activity. Accordingly, in-
creased cholinergic neurotransmission was proposed as a
counter-balance to increased mesolimbic DA activity to
dampen positive symptoms of schizophrenia (Tandon,
1999).

As oxotremorine is a nonselective muscarinic receptor
agonist, this study was unable to determine which receptor
subtype(s) is involved in the hyper-responsiveness to this
drug in our model. Recently, however, the use of muscarinic
receptor knockout mice suggested the involvement of
various subtypes in multiple physiological processes (Wess,
2004). Accordingly, oxotremorine-induced tremor response
was shown to be mediated by M, receptors (Bymaster et al,
2003; Gomeza et al, 1999), with the M; receptors contribu-
tion to pilocarpine-induced seizure (Bymaster et al, 2003;
Hamilton et al, 1997). Muscarinic agonist-induced saliva-
tion was shown to be mostly mediated by M; receptors
(Matsui et al, 2000) with more minor role for the M;, M,,
and Ms subtypes (Bymaster et al, 2003; Takeuchi et al,
2002). M, receptors were shown to play a predominant role
in the hypothermic effect of oxotremorine (Bymaster et al,
2003; Gomeza et al, 1999) with an additional contribution of
the M3 subtype (Bymaster et al, 2003). Finally, the analgesic
effect of oxotremorine was reported to be predominantly
modulated by M, receptors with a small contribution of the
M, subtype (Gomeza et al, 1999; Duttaroy et al, 2002).
Further studies will be required to establish which
muscarinic receptor subtype(s) is mostly involved in
oxotremorine-hyper-responsiveness in NVH lesioned rats.

Muscarinic receptors are known to be involved in other
behaviors such as attention, and working and spatial
memories (Everitt and Robbins, 1997; Sarter and Bruno,
1997; Quirion et al, 1995; Rowe et al, 2003), which were
reported to be impaired in post-pubertal NVH lesioned rats



(Grecksch et al, 1999; Le Pen et al, 2000; Lipska et al, 2002).
The present data showing increased levels of both M;- and
M,-like muscarinic receptor binding sites and heightened
responsiveness to oxotremorine further suggest a role for
muscarinic cholinergic neurotransmission in some beha-
vioral impairment reported in this animal model, and add
support to the functional relevance of cholinergic neuro-
transmission in schizophrenia.
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