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The mode of action by which the atypical antipsychotic drug clozapine exerts its superior efficacy to ameliorate both positive and

negative symptoms is still unknown. In the present in vivo electrophysiological study, we investigate the effects of haloperidol (a typical

antipsychotic drug) and clozapine on ventral tegmental area (VTA) dopamine (DA) neurons in a situation of hyperdopaminergic activity

in order to mimic tentatively a condition similar to that seen in schizophrenia. Increased DA transmission was induced by elevating

endogenous levels of the N-methyl-D-aspartate receptor and a7* nicotinic receptor antagonist kynurenic acid (KYNA; by means of PNU

156561A, 40mg /kg, i.v.). In control rats, i.v. administered haloperidol (0.05–0.8mg/kg) or clozapine (1.25–10mg/kg) was associated with

increased firing rate and burst firing activity of VTA DA neurons. However, in rats displaying hyperdopaminergia (induced by elevated

levels of KYNA), the effects of clozapine on VTA DA neurons were converted into pure inhibitory responses, including decrease in burst

firing activity. In contrast, haloperidol still produced an excitatory action on VTA DA neurons in rats with elevated levels of endogenous

brain KYNA. The results of the present study suggest that clozapine facilitates or inhibits VTA DA neurotransmission, depending on brain

concentration of KYNA. Such an effect of clozapine may be related to its unique effect in also ameliorating negative symptoms of

schizophrenia.
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INTRODUCTION

Schizophrenia has for decades been associated with dopa-
minergic (DA) hyperactivity (Abi-Dargham et al, 2000; see
Carlsson et al, 2001). The beneficial effects of classic
antipsychotic drugs (eg haloperidol), especially with regard
to ameliorating the positive symptoms of schizophrenia, are
thought to be related to a reduced DA neurotransmission
within the limbic region of the brain (see Carlsson et al,
2001), in particular, to antagonism of DA-D2 receptors. A
profound blockade of DA-D2 receptors in the basal ganglia
is, however, also associated with side effects, such as
extrapyramidal symptoms (EPS; Farde et al, 1992; see
Gerlach, 2002). The antipsychotic drug clozapine, with
remarkable efficacy in treatment-resistant schizophrenia,
has very low incidence of EPS and has thus been classified as
an atypical antipsychotic drug (Claghorn et al, 1987; Coward

et al, 1989). Another beneficial effect of clozapine is its
superior efficacy in also ameliorating negative symptoms.
During the last decade, large efforts have been made to
understand the mode of antipsychotic action of clozapine,
but despite a large number of studies, our knowledge
remains fragmentary. It is established that clozapine not
only interacts with all DA receptors (the D4 subtype showing
the highest affinity (19 nM; Van Tol et al, 1991)), but also
with other metabotropic receptors, for example, those for
serotonin (5HT1 and 5HT2; Canton et al, 1990), acetylcholine
(Snyder et al, 1974), noradrenaline (see Coward, 1992), and
histamine (see Brunello et al, 1995; see Coward, 1992).
Previous studies also point to an interaction with some
ionotropic receptors, for example, the N-methyl-D-aspartate
(NMDA) receptor (Arvanov et al, 1997; Ossowska et al,
1999) and the GABAA receptor (Squires and Saederup, 1998).
It has been suggested that clozapine has a preferential action
on the mesolimbic DA system as compared to the
nigrostriatal DA system (Andén and Stock, 1973; Bartholini,
1976; Chiodo and Bunney, 1983, 1985; Moghaddam and
Bunney, 1990). Moreover, since clozapine is a potent
serotonin 5-HT2-receptor antagonist, it has been suggested
that concurrent 5-HT2 and DA-D2 receptor antagonism may
contribute to its atypical profile (see Deutch et al, 1991;
Ichikawa et al, 2001; Meltzer and Nash, 1991).
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Previous electrophysiological studies show that all anti-
psychotic drugs, including clozapine and haloperidol,
when acutely administered increase the firing rate and
burst firing activity of ventral tegmental area (VTA) DA
neurons (Gessa et al, 2000; Tung et al, 1991; White and
Wang, 1983). However, most of these results derive from
studies where naive control rats have been used. In the
present in vivo electrophysiological study, we investigate
the effects on VTA DA neurons of clozapine or halo-
peridol in a situation of hyperdopaminergia in order to
mimic tentatively a condition similar to that occurring
in schizophrenia. Increased DA transmission was pharma-
cologically induced by administration of the kynurenine
3-hydroxylase inhibitor PNU 156561A, thereby elevating
endogenous brain levels of the NMDA-receptor anta-
gonist kynurenic acid (KYNA). Previous studies demon-
strate that such treatment is associated with increased
firing rate and burst firing activity of rat midbrain
DA neurons (Erhardt and Engberg, 2002; Erhardt et al,
2001a).

MATERIALS AND METHODS

Animals

Experiments were performed on male Sprague–Dawley rats
(B&K Universal AB, Sollentuna, Sweden; weighing between
200 and 250 g). The animals were housed in groups of five,
and free access to food and water was provided. Environ-
mental conditions were checked daily and maintained
under constant temperature (251C) and 40–60% humidity
in a room with a regulated 12-h light/dark cycle (lights
on at 0600). Experiments were approved by and per-
formed in accordance with the guidelines of the Ethical
Committee of Northern Stockholm, Sweden and all efforts
were made to minimize the number of animals used and
their suffering.

Surgery

Before surgery, rats were pretreated with PNU 156561A
(dissolved in 10% b-cyclodextrin) or vehicle i.v. The
animals were placed in a restrainer and a temporary
cannula was inserted into a lateral tail vein. Following drug
administration, the cannula was removed and the rats were
placed individually in a Plexiglas cage. About 5 h later, rats
were anesthetized (chloral hydrate; 400 mg/kg, intraperito-
neally) and then mounted onto the ear bars of a
conventional stereotaxic frame (David Kopf Instruments,
Tujunga, CA, USA) so that the skull was set in a horizontal
plane and the nose was secured using a clamp at the front of
the frame. For i.v. administration, a cannula was again
inserted into a lateral tail vein and additional injections of
chloral hydrate were given as they were required to
maintain a stable level of anesthesia. Also, clozapine and
haloperidol were given through the lateral tail vein.
Throughout the experiments, the body temperature of the
animals was maintained at 371C by means of a thermostatic
heating pad. The skull surface was exposed and a 3-mm
burr hole was drilled with its center located approximately
3 mm anterior to the lambda and 0.7 mm lateral to the
midline.

Extracellular Single Unit Recording

Following careful removal of the dura, a glass microelec-
trode with a tip diameter of approximately 1–2 mm (filled
with 2 M sodium acetate saturated with Pontamine Sky
Blue) was lowered by means of a hydraulic microdrive
(David Kopf Instruments, Tujunga, CA, USA) into the
region of VTA, according to the stereotaxic coordinates
from the atlas of Paxinos and Watson (1998). The in vitro
impedance of the electrode was generally 5–8 MO, measured
at 135 Hz in 0.9% saline. Single unit potentials were passed
through a high input-impedance amplifier and filters. The
impulses were discriminated from background noise and
fed into a computer, and simultaneously displayed on a
digital storage oscilloscope, monitored on an audio monitor
and on a strip chart recorder (Gould). All DA neurons were
found 7.5–8.5 mm from the brain surface and all DA
neurons fulfilled the neurophysiological characteristics
(triphasic action potential of more than 2.0 ms, basal firing
rates of 1 and 10 Hz, and frequent occurrence of burst
firing) previously described for DA neurons in the VTA
(Wang, 1981). Only one DA neuron was studied in each
rat. The position of the electrode was marked at the end of
each experiment by iontophoretic ejection of Pontamine
Sky Blue. The brains were subjected to conventional
histological procedures for verification of recording sites.
All recording sites were found within the boundaries of the
VTA. Anatomical subdivisions (nucleus parabrachialis
pigmentosus (PBP) or nucleus paranigralis (PN)) were
assessed according to the atlas of Paxinos and Watson
(1998).

Data Analysis

The distribution of spikes was analyzed online utilizing a
Macintosh computer. The software used for the analysis of
firing was written in-house using a high-level object-
oriented programming language called ‘G’ (Lab VIEW;
National Instruments, Austin, TX, USA). The software was
designed to sample and analyze the intervals of an arbitrary
number of TTL pulses (corresponding to spikes passing
through the discriminating filter) using a time resolution of
1 ms. An interspike interval was designated as the time (in
ms) elapsed between the rising edges of two sequential TTL
pulses. In order to avoid artifacts in the sampling
procedure, the spike analyzer ignored time intervals below
20 ms. The onset of a burst was determined as an interspike
interval shorter than 80 ms and the termination of a burst
by the next interval longer than 160 ms (Grace and Bunney,
1984a, b). The software program also sorted the intervals of
recorded spikes and divided them into 3 ms bins and
displayed the results as an interspike time interval
histogram (ISH) with regard to the number of intervals
corresponding to each bin. The intervals were analyzed with
regard to the number of bursts that occurred during a 100-
spike sampling period along with the calculation of the
percentage of spikes fired in bursts. Firing rate, percentage
of spikes fired in bursts and variation coefficient (calculated
as the ratio between the standard deviation and the mean
interval of an ISH and used as a measure of the regularity of
firing; Werner and Mountcastle, 1963), were expressed as
the median of at least three consecutive ISHs.
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Drugs

The following drugs were used: chloral hydrate (Merck,
Darmstadt, Germany), PNU 156561A [(R,S)-2-amino-4-oxo-
4(30-f0-dichlorophenyl) butanoic acid] (kindly donated by
Dr C Speciale, Pharmacia & Upjohn, Milano, Italy), b-
cyclodextrin, clozapine (Sigma, St Louis, MO, USA), and
haloperidol (Janssen Pharmaceutical, NV, 2340 Beerse,
Belgium).

Statistical Analysis

Statistically significant differences regarding firing rate,
burst firing activity, and variation coefficient were estab-
lished using the Kruskal–Wallis analysis of variance
followed by the Wilcoxon signed rank test or the Mann–
Whitney U-test. Significance was assumed for all values
where Po0.05.

RESULTS

I.V. administration of the atypical antipsychotic drug
clozapine (n¼ 11; 1.25–10 mg/kg) or the classic antipsycho-
tic drug haloperidol (n¼ 7; 0.05–0.8 mg/kg) produced a
dose-dependent increase in firing rate and in the percentage
of spikes fired in bursts of VTA DA neurons (Table 1,
Figure 1). No significant effects on the regularity of firing,
expressed as the variation coefficient, were observed by
either drug (Figures 3 and 4). Clozapine or haloperidol
produced a significant increase in the mean number of
bursts (recorded during a 100-spike sampling period) as
well as in the mean number of spikes per bursts when
compared with predrug levels (see Table 1). Moreover, two
of nine DA neurons were excluded from analysis due to
induction of depolarization block after 0.2 and 0.4 mg/kg
haloperidol, respectively.

Administration of PNU 156561A (40 mg/kg, i.v., 5–7 h)
has previously been shown to elevate endogenous levels of
KYNA three- to five-fold (Erhardt and Engberg, 2000, 2002;
Erhardt et al, 2000, 2001a, b, 2002a) and to increase
significantly firing rate and percent spikes fired in bursts
of rat midbrain DA neurons (Erhardt and Engberg, 2002;
Erhardt et al, 2001a). However, in the present study efforts
were made to avoid recording of DA neurons with very high
frequency and burst firing activity, that is, basal firing rate
over 10 Hz and basal percentage of spikes fired in bursts
over 90%. In line with our previous study (Erhardt and
Engberg, 2002), 25% of all VTA DA neurons in rats with
elevated levels of KYNA occasionally showed depolariza-
tion-block characteristics. Such neurons were excluded
from pharmacological analyses. In spite of these limitations,
a tendency toward higher basal frequency and higher basal
percentage of spikes fired in bursts were found in rats with
elevated KYNA levels (Figures 2, 3a, b), although no
statistical significances were obtained due to the relatively
low numbers of neurons analyzed.

Pretreatment with PNU 156561 A (40 mg/kg, i.v., n¼ 8, 5–
7 h) was found not only to antagonize the increase in firing
rate and percentage of spikes fired in burst of VTA DA
neurons induced by clozapine (1.25–10 mg/kg, i.v.), but also
to reverse the action of clozapine, leading to a tendency in
reduction in firing rate and to a significant decrease in the T
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percentage of spikes fired in burst (Table 1, Figure 2).
This reduction in burst firing activity was observed in
seven of eight DA neurons, irrespective of predrug basal
characteristics. Furthermore, four of seven spontaneously
bursting neurons were converted into nonbursting
neurons by clozapine. Thus, this pretreatment decreased
the average number of burst during a 300-spike sampling
period as well as the number of spikes within a burst
(see Table 1). No significant effects on the regularity of
firing expressed as the variation coefficient was observed
(Figures 3).

In contrast to clozapine, the effects of haloperidol (see
Figures 4) on VTA DA neurons after pretreatment with PNU
156561A seemed to be clearly potentiated, since haloperidol
forced all DA neurons recorded into depolarization block
already after 0.1 mg/kg haloperidol (see Table 1).

DISCUSSION

The present study describes an interaction between
endogenous KYNA and the response of VTA DA neurons
to various antipsychotic drugs. KYNA is a noncompetitive
antagonist of the NMDA receptor ion-channel complex,
acting on the strychnine-insensitive glycine recognition site
(Birch et al, 1988), with an IC50 in the low micromolar range
(IC50 ¼ 7.9 mM; Ganong and Cotman, 1986; Kessler et al,
1989; Parsons et al, 1997). Furthermore, a recent study
showed that KYNA blocks the a7* nicotinic receptor with
the same IC50 value as for the glycine-site of the NMDA
receptors (Hilmas et al, 2001).

Previous studies have shown that the concentration of
KYNA is elevated in the cerebrospinal fluid of schizo-
phrenic patients (Erhardt et al, 2001c) as well as in the post-

Figure 1 Extracellular recording from a spontaneously bursting DA neuron in the VTA depicting the effect of i.v. administration of clozapine. (a) ISH
before drug administration. (b) ISH after administration of clozapine (2.5mg/kg, i.v.). (c) ISH after administration of clozapine (10mg/kg, i.v.). (d) Cumulative
rate histogram showing the action of clozapine (1.25+1.25+2.5+5mg/kg, injected at arrows) on the firing rate. Horizontal bars indicate the time periods
where the three ISHs were recorded. (e) Spontaneous action potential from the same DA neuron.

Figure 2 Extracellular recording from a spontaneously bursting DA neuron in the VTA depicting the effect of i.v. administration of clozapine following
pretreatment with PNU 156561 A (40mg/kg, i.v., 6 h). (a) ISH before drug administration. (b) ISH after administration of clozapine (2.5mg/kg, i.v.). (c) ISH
after administration of clozapine (10mg/kg i.v). (d) Cumulative rate histogram showing the action of clozapine (1.25+1.25+2.5+5mg/kg, injected at
arrows) on the firing rate. Horizontal bars indicate the time periods where the three ISHs were recorded. (e) Spontaneous action potential from the same
DA neuron.
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mortem brain of schizophrenics (Schwarcz et al, 2001).
Interestingly, a three- to five-fold increase in endogenous
levels of rat brain KYNA is associated with dramatic effects
on neuronal firing of midbrain DA neurons, including

Figure 3 Effects of incremental doses of i.v. administered clozapine
(1.25–10mg/kg) in control rats and rats pretreated with PNU 156561 A
(40mg/kg, i.v., 5–7 h) on (a) the firing rate, (b) the percent burst firing
activity and (c) the regularity of firing (assessed by the variation coefficient).
Each value represents mean7 SEM from six to 11 VTA DA neurons.
Statistic: *Po0.05 (Wilcoxon signed rank test) vs corresponding predrug
value and +Po0.05, ++Po0.01 vs corresponding control value (the
Mann–Whitney U-test).

Figure 4 Effects of incremental doses of i.v. administered haloperidol
(0.05–0.8mg/kg) in control rats on (a) the firing rate, (b) the percent burst
firing activity, and (c) the regularity of firing (assessed by the variation
coefficient). Each value represents mean7 SEM from six to seven VTA DA
neurons. Statistic: *Po0.05 (the Wilcoxon signed rank test) vs correspond-
ing predrug value.
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increased firing rate and burst firing activity (Erhardt and
Engberg, 2002; Erhardt et al, 2001a).

The results of the present study show that i.v. adminis-
tration of clozapine or haloperidol increases the firing rate
and burst firing activity of VTA DA neurons. These findings
are in excellent agreement with previous in vivo electro-
physiological studies (Gessa et al, 2000; Tung et al, 1991;
White and Wang, 1983) and it is generally accepted that
antipsychotic drugs increase DA cell firing rate by blockade
of somatodendritic DA autoreceptors (Pucak and Grace,
1994, 1996). However, in a situation of hyperdopaminergia
induced by elevation of brain KYNA (Erhardt and Engberg,
2000, 2002; Erhardt et al, 2000, 2001a, b, 2002a; Speciale et al,
1996), the excitatory effects of clozapine observed in control
rats were converted into pure inhibitory responses by the
drug. In contrast, the excitatory action of haloperidol on
VTA DA neurons was even more pronounced in rats with
elevated levels of endogenous brain KYNA, since adminis-
tration of the drug in low doses was associated with a
depolarization block of all DA neurons recorded. This
finding is in sharp contrast with a previous electrophysio-
logical study showing that i.c.v. administration of KYNA
blocks the excitatory action of systemically administered
haloperidol on VTA DA neurons (Tung et al, 1991). The
discrepancy between these results may be related to
different routes of elevating KYNA levels in the brain
(Erhardt and Engberg, 2000).

The potentiated effect of haloperidol and the conversion
of clozapine’s effects into an inhibitory response seen in rats
with elevated brain levels of KYNA were unexpected and
point to a profound difference in the mode of action
between these drugs. Judging from previous electrophysio-
logical studies, a decreased glutamatergic tone in the brain
is associated with an increase of neuronal activity of
midbrain DA neurons. Thus, systemic administration of
NMDA-receptor antagonists, for example, MK 801, phency-
clidine and ketamine as well as elevated KYNA levels in
brain are associated with an increased neuronal activity of
these neurons (Erhardt and Engberg, 2002; Erhardt et al,
2001a; French, 1994; French et al, 1993; Murase et al, 1993).
These paradoxical effects of glutamate receptor antagonists
are thought to be induced by an inadequate balance of
afferent regulation by GABAergic and glutamatergic projec-
tions, for example, from the prefrontal cortex and/or
subcortical areas (Carr and Sesack, 2000; Kalivas et al,
1993; Phillipson, 1979; Sesack et al, 1989). In particular, it is
suggested that KYNA primarily reduces the activity of
GABAergic projections to the VTA, thereby activating VTA
DA neurons by a decreased GABAergic tone (Erhardt and
Engberg, 2002; Erhardt et al, 2002b). With regard to
haloperidol, an inadequate balance between GABAergic
and glutamatergic afferents, as induced by elevated KYNA
levels, may promote the drug to induce depolarization block
by its potent antagonism at somatodendritic DA-D2

receptors.
The excitatory and inhibitory effects of i.v. administered

clozapine on VTA DA neurons in control rats and in rats
with elevated levels of KYNA, respectively, show striking
similarities with the effects of i.v. administered nicotine on
these neurons (Erhardt et al, 2002a). However, the effects of
nicotine on VTA DA neurons were suggested to be the
result of an interaction with glutamatergic mechanisms and

unrelated to an activation of a7* nicotinic receptors, since
addition of the glycine-site agonist D-cycloserine to PNU
156561A pretreated rats restored the excitatory action of
nicotine (Erhardt et al, 2002a). Judging from the present
results, the inhibitory action of clozapine in rats with
elevated brain levels of KYNA appears to be dissociated
from an effect on DA receptors, and rather related to
interference with glutamatergic or cholinergic mechanisms.
Present data do not allow any definitive conclusion
regarding the mechanism behind the inhibitory action of
clozapine on VTA DA neurons. Hypothetically, the effect
could be mediated by (I) activation of presynaptic a7*
nicotinic receptors located on glutamatergic afferents
(McGehee et al, 1995; Wonnacott et al, 2000; leading to a
potentially increased glutamate release by clozapine) (II)
activation of postsynaptic a7* nicotinic receptor, located on
cell soma or dendrites of VTA DA neurons or (III)
displacement of KYNA at postsynaptic NMDA receptors
located on cell soma or dendrites of GABAergic neurons
projecting to VTA DA neurons, thereby restoring the
balance between GABAergic and glutamatergic projections
to the VTA. An interaction between clozapine and the a7*
nicotinic receptor is supported by the demonstration of a
clozapine-induced release of acetylcholine in the prefrontal
cortex (Ichikawa et al, 2002). In favor of an interaction by
clozapine with glutamatergic mechanisms, treatment aug-
mentation studies with agents acting at the glycine-site of
the NMDA receptor have shown that glycine and D-
cycloserine improve negative symptoms when added to
conventional antipsychotic drugs, but not when added to
clozapine (Evins et al, 2002; Goff et al, 1999, Heresco-Levy
et al, 1998, 1999; Javitt et al, 1994; Tsai et al, 1998). This
indicates that clozapine may be an agonist or partial agonist
at the glycine-site of the NMDA receptor or an inhibitor of
the glycine transporter and such actions may contribute to
its unique clinical efficacy. Interestingly, judging from the
results of the present study, clozapine resembles the effect
of D-cycloserine on VTA DA neurons, that is, an excitatory
action in control rats and an inhibitory effect in rats with
elevated levels of KYNA (Erhardt and Engberg, 2002).
Preliminary data from our laboratory also point to an
interaction of clozapine with the glycine transporter
(unpublished data).

In conclusion, the present study demonstrates profound
differences between haloperidol and clozapine with regard
to their effects on the neuronal activity of VTA DA neurons
as revealed by elevation of endogenous brain KYNA levels.
Thus, in a situation of hyperdopaminergia, the excitatory
action of haloperidol is potentiated, whereas clozapine
facilitates or inhibits VTA DA neurotransmission, depend-
ing on the pre-existent DA tone. Tentatively, these actions
of clozapine and haloperidol may also contribute to
differences in clinical efficacy between these drugs.
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