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Liquids more stable than crystals in particles with
limited valence and flexible bonds

Frank Smallenburg* and Francesco Sciortino

All liquids (except helium owing to quantum effects) crystallize
at low temperatures, forming ordered structures. The com-
petition between disorder, which stabilizes the liquid phase,
and energy, which leads to a preference for the crystalline
structure, inevitably favours the crystal when the temperature
is lowered and entropy becomes progressively less relevant.
The liquid state survives at low temperatures only as a glass,
an out-of-equilibrium arrested state of matter. This textbook
description holds inevitably for atomic and molecular systems,
where particle interactions are set by quantum-mechanical
laws. The question remains whether it holds for colloidal parti-
cles, where interparticle interactions are usually short-ranged
and tunable. Here we show that for patchy colloids with limited
valence1, conditions can be found for which the liquid phase
is stable even in the zero-temperature limit. Our results offer
fresh cues for understanding the stability of gels2 and the
glass-forming ability ofmolecular network glasses3,4.

The ability to control the selectivity and angular flexibility of
interparticle interactions5 makes it possible to provide valence
to colloids. This can be done by means of chemical6–8 or
physical9 patterning of the colloid surface, that is, locally changing
either its chemical properties (for example, hydrophobicity),
or the physical properties (for example, roughness). Exploiting
valence offers enormous possibilities, some of which have been
addressed in recent years, theoretically10, numerically4,11,12 and
experimentally2,7,13,14. As colloidal interactions are typically short-
ranged, valence provides an implicit quantization of the particle
energy, which becomes essentially proportional to the (limited)
number of formed bonds. In an optimal arrangement, all particles
bind with their maximum number of neighbours and the system
is in its lowest possible (ground) energy state. Typically, such
an optimal arrangement is spatially ordered, defining the most
stable crystal phase(s).

In principle, when the density is not too high, it is possible
to imagine disordered arrangements in which all particles are
fully bonded, with exactly the same energy as the crystal. Such a
state, which was recently shown to be stable in a model system
for DNA-functionalized colloids12, is a liquid: a fluid, disordered
phase at temperatures below the critical temperature. Under this
unconventional condition, the stability of the system becomes
controlled by its entropy, a case reminiscent of (purely entropy-
driven) hard-sphere particles. In this study we demonstrate that the
flexibility of the bonds (encoded in the angular patch width)—a
tunable quantity in the design of patchy colloidal particles—is the
key element in controlling the entropy of the liquid as compared
with that of the crystal. Large binding angles combined with
limited valence give rise to a thermodynamically stable, fully
bonded liquid phase.
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The model we consider is an extension of the widely used
Kern–Frenkel model15 for patchy particles, where we explicitly
enforce a single-bond-per-patch condition. Each spherical particle
of diameter σ has a number f of circular attractive patches on
its surface, characterized by a maximum opening angle θmax. Two
particles are bonded with a fixed bonding energy ε when their
centre-to-centre distance is smaller than the interaction range σ+δ,
and the vector connecting the particles passes through a patch
on both particles (see Supplementary Information). We examine
monodisperse systems of particles with f = 4 attractive patches,
arranged in a tetrahedral configuration. In addition, to show that
the behaviour of these systems is robust with respect to changes
in the patch positions, as well as the number of patches, we also
examine (for a single patch size) the phase diagram of particles
with f = 3 patches, arranged along the equator. Although the
one-bond-per-patch limitations renders this model inadequate for
colloidal particles with large attractive surface regions, we stress
here that the model mimics systems with a limited-valence bonding
mechanism that retains a large degree of bonding flexibility for
all experimentally relevant temperature scales. For example, one
might consider colloidal particles functionalized with a limited
number (f ) of long strands of DNA (refs 12,16), DNA constructs
that can form a fixed number of bonds14,17, or even polymer
networks18 where the particles are polymerizable monomers with
a fixed functionality.

The phase diagrams, evaluated using free-energy calculations
(see Methods), for different θmax are shown in Fig. 1 as a function of
density ρ and T . The stable phases include the disordered gas and
liquid phases, a diamond cubic crystal phase, a body-centred cubic
(bcc) crystal phase, consisting of two interlocking diamond lattices,
and a face-centred cubic (fcc) crystal phase, where, for sufficiently
narrow patches, the bonds are periodically ordered at low T and
disordered at highT . All crystals are fully bonded at lowT .

For narrow patch width, the four-patch phase diagram closely
resembles the standard phase diagrams with a triple point below
which the liquid state ceases to exist19. Unexpectedly, for wider
patches the diamond crystal disappears from the phase diagram
and a region in which the liquid is stable down to vanishing T
opens up at intermediate ρ, in agreement with a numerical study
of DNA-functionalized colloids12,20. In this range of densities, the
liquid is the thermodynamically stable phase, despite its intrinsic
disorder. Increasing the patch width even further reduces the
region of stability for the crystal phases. For very wide patches,
the phase diagram simply consists of gas, liquid and fcc crystal
phases, with a large stable liquid region in the zero-temperature
limit. A typical snapshot of a fully bonded liquid is shown in the
Supplementary Information. For the three-patch case, the phase
diagram for narrow patches is known to contain an fcc crystal phase
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Figure 1 | Phase diagram of patchy colloids for different patch widths. Phase diagrams in the dimensionless density (ρσ 3)–temperature kBT/ε
representation, where kB is the Boltzmann constant, for patchy particles. a–e, Diagrams for particles with four tetrahedrally arranged patches and patch
widths cosθmax=0.9 (a), cosθmax=0.8 (b), cosθmax=0.7 (c) and cosθmax=0.6 (d), as well as a diagram for particles with three patches along the
equator (e) and cosθmax=0.7. The interaction range in all cases is fixed at δ=0.12σ , a value typical of colloidal interactions. For tetrahedrally arranged
patches, narrower patches (cosθmax >0.9) behave as the cosθmax=0.9 case19 and are not shown here. The grey areas denote coexistence regions and the
points denote calculated coexisting states (tie lines are horizontal). Black triangles indicate triple points. The points below kBT/ε=0.1 are based on
extrapolation of the potential energy. The label ofcc denotes the orientationally ordered fcc phase; the disordered fcc phase is simply denoted as fcc.
f–i, Pictures showing the unit cell of bcc (f), with the two interspersed diamond lattices indicated in different colours, diamond (g), orientationally ordered
fcc (h) and disordered fcc (i) .

at high ρ, and a crystal of interpenetrating hexagonal sheets or
separate hexagonal sheets at intermediate ρ (ref. 21). For wider
patches (cosθmax=0.7), we see again that the lower-density ordered
phases disappear in favour of a fully bonded liquid phase, leaving
disordered fcc as the only stable crystal structure. The remainder of
this paper will focus on the particles with four patches.

Why is the liquidmore stable than the crystal? Figure 2 shows the
T dependence of the number of bonds per particle nb for different
θmax. On cooling, nb increases continuously to four, and the system
progressively approaches the fully bonded random tetrahedral
network state, the ground state of the system. At lowT , the potential
energy of the liquid is thus equal to that of the crystals. Hence,
the stability of the liquid, as in the hard-sphere case, results from
a subtle competition between vibrational Svib and configurational
Sconf components of the total entropy Stot = Svib+Sconf (refs 3,22),
both of which can be calculated (see Methods). Svib measures the
(phase-space) volume explored by each particle in a fixed bonding
topology, and is larger in the ordered structure than in the fluid. Sconf
at T = 0 measures the number of distinct configurations resulting
in a fully bonded macroscopic state. It is positive in the fluid phase,
but vanishes in our system for the crystal phase. Note that Sconf can
still play a role in crystals with asymmetric bonds, such as hydrogen
bonds in ice23, or patchy particles withmultiple patch types24.

Figure 3a shows how patch width affects the entropy. As for the
dense hard-sphere case, Svib in the diamond structure (SDCvib ) is always
larger than in the liquid (Sliqvib). However, the entropy of the liquid
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Figure 2 | Number of bonds per particle in the tetrahedral liquid phase.
Here ρσ 3

=0.57, the same density as the diamond crystal phase. In the
zero-temperature limit, the number of bonds per particle nb reaches the
maximum of f=4. Points denote measurements in NVT simulations, and
lines are fits to guide the eye. Note that the approach to the ground state
(nb=4) takes place at higher T for large θmax values, a result induced by
the larger bonding volume.

is enhanced by Sconf, causing for wide angles the unconventional
stability of the liquid phase even when T → 0. In this large θmax
region, the model provides a neat example of a system for which
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Figure 3 | Total, vibrational and configurational entropy for the
zero-temperature phases. Here ρσ 3

=0.57, and each particle has four
patches. a, The vibrational and total entropy for the diamond crystal (DC)
and liquid (liq) phases. For the diamond crystal, the total entropy SDC

tot
coincides with the vibrational entropy SDC

vib . Below cosθmax≈0.89, the fully
bonded liquid becomes more stable than the crystal. For each angular
patch width θmax, five independent Sliq

vib calculations are shown. Lines are
polynomial fits to the points. With extremely lengthy simulations fully
bonded configurations can be sampled up to cosθmax=0.92. Note that the
entropies are negative because we are investigating a classical system and
the (constant) kinetic contribution is not included. b, Configurational
entropy Sconf

liq of the liquid at T→0, calculated as the difference between
the fits for Sliq

tot and Sliq
vib.

the Kauzmann temperature (TK; ref. 3) does not exist: Sconf (Fig. 3b)
does not vanish when T→ 0. Thus, for wide patches, a previously
unexplored thermodynamically stable state of matter arises: the
disordered fully bonded network. Note that although the angular
dependence of our bonding potential is flat, Sconf is large enough to
stabilize the liquid even in the presence of a weak bending cost. This
flexibility is realistic for single-strand DNA and polymer bonds,
which have finite persistence lengths at all experimentally accessible
temperature scales. In this case, the stability of the liquid phase may
technically not hold all the way down to T = 0, but the stability of
the liquid phase will still occur at any relevant T .

To provide further evidence that sampling of the fully bonded
state is not pre-empted by dynamic arrest and to characterize
the low-T dynamics we investigate the microscopic mechanism
associated with the evolution of the network. We start by focusing
on the defects of the fully bonded network (broken bonds), which
act as elementary diffusing units. At any T close to zero the number
of broken bonds per particle (αbb) depends on T as exp(−ε/2kBT )
(see Supplementary Information). Figure 4a shows that αbb indeed
satisfies the exponential T dependence for all θmax.

To quantify the low-T dynamics, we perform event-driven
molecular dynamics (EDMD) simulations and examine the
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Figure 4 | Defects in the tetrahedral network and their dynamic role.
a, The number of broken bonds per particle αbb as a function of the inverse
temperature ε/kBT, for different patch widths, at constant density
ρσ 3
=0.65 and f=4. The line has slope−1/2. b, The (dimensionless)

diffusion coefficient Dτ/σ 2 as a function of the inverse temperature ε/kBT.
In the EDMD, an attempt to break, form or switch bond is performed with a
rate γ . Data here refer to a constant bond switching rate γ τ = 100, a value
for which the dynamics is not affected by the specific value of γ (see
Supplementary Information). The lines have slopes−1/2 (for
cosθmax=0.6,0.7,0.8) and slope−2 (for cosθmax=0.9) .

diffusion coefficientD at low T (Fig. 4b). We observe two different
mechanisms for restructuring the network at low T : bond-breaking
and bond-switching. For small θmax, network rearrangement re-
quires the breaking and reforming of several bonds. As a result, D
follows anArrhenius lawwith an activation energy of approximately
2ε. However, for large θmax the bonding volumes of different neigh-
bours can overlap and the switching of bonds with no energetic
penalty allows the system to relax stresses much more quickly. In
this case, D follows an Arrhenius law with an activation energy of
only ε/2; the same as αbb. Thus, D is proportional to the number
of broken bonds, demonstrating that these defects are the key
element in the microscopic dynamics. The bond-switching mech-
anism mimics the microscopic dynamics of vitrimers18, a recently
invented malleable network plastic where a catalyst enables the
switching (transesterification) of bonds between nearby polymers.
Interestingly, D always vanishes following the Arrhenius behaviour
characteristic of strong atomic and molecular network-forming
liquids25, regardless of themicroscopic dynamics.

In summary, our calculations clearly show that for patchy
colloids with a limited number of flexible bonds, the liquid
smoothly forms a fully bonded disordered network on lowering
T , through the progressive reduction of the number of network
defects, without the intervention of a more stable crystal phase or
phase separation. Counterintuitively, the low-T phase behaviour is
dominated by entropy, rather than energy, as all competing phases
reach the ground state. The main requirements for the existence of

556 NATURE PHYSICS | VOL 9 | SEPTEMBER 2013 | www.nature.com/naturephysics

© 2013 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys2693
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS2693 LETTERS
a stable liquid at low T are thus a large flexibility of the interparticle
bonds (in this temperature range) and a low valence. The large patch
width ensures that a wide variety of network realizations can be
formed. This configurational entropy is instrumental in stabilizing
the liquid phase with respect to the crystal. The low valence ensures
that the density of the liquid coexisting with the gas is small10,
leaving a large density region where the network can form. Both
are key ingredients for the formation of what can be considered
a previously unexplored state of matter: the thermodynamically
stable fully bonded disordered network state.

Methods
Model. We consider an extension of the Kern–Frenkel model15, where each
patch can form at most one bond. In the normal Kern–Frenkel model, two patchy
particles i and j, located at ri and rj respectively, feel an attraction given by

upatch(i,j)= usw(rij )8(rij ,{pi})8(rji,{pj })

where rij = rj − ri, {pi} is a set of normalized vectors pointing from the centre of
particle i towards each of its patches, and usw is a square-well potential of hard
diameter σ , range δ and depth ε.

βusw(r)=

 ∞ if r <σ
−βε if σ ≤ r <σ +δ
0 otherwise

Here, β=1/kBT , with kB being Boltzmann’s constant.
The function8(rkl ,{pk}) is defined as

8(r,{p})=
{
1 if r̂ · p̂> cos(θmax) for any p in {p}
0 otherwise

In short, two particles bond if the vector connecting the centres of the particles
passes through an attractive patch on each of the surfaces of each particle. Hence,
as long as the patches on the same particle do not overlap, the Kern–Frenkel model
allows for only a single bond between two particles. However, a single patch can
make a bond with multiple different nearby particles if the patch width is larger
(for our δ) than 0.895.

Here, we propose and implement (see Supplementary Information) a
modification to the Kern–Frenkel model that allows only one bond per patch for
all θmax values. In this modification, the overlap of the bonding volumes is not a
sufficient criterion for defining the presence of a bond.

Simulation methods. To calculate the free energy of the various phases as a
function of the density, we use thermodynamic integration over the equation of
state26, as measured using EDMD simulations. For the gas, the reference state is
an ideal gas. For the liquid, and fluids above the critical point, the hard-sphere
fluid is used as a reference state, integrating over the well depth ε at fixed density.
Similarly, the hard-sphere crystal was used as a reference state for the disordered fcc
crystal. We use the Frenkel–Ladd method to calculate free energies of the diamond,
bcc and ordered fcc crystal structures27, using an additional aligning potential
to fix the orientation of the particles28. Finally, we determine phase coexistence
using a common-tangent construction, and use the resulting coexistence points to
draw the phase diagram.

To determine which crystal structures to consider in our free-energy
calculations, we employed the floppy-box method29, where candidate structures
are generated by a Monte Carlo simulation with very few particles and a variable
box shape at constant pressure. Resulting unit cells were then expanded to a larger
system size and equilibrated in Monte Carlo NPT simulations. The structures that
repeatedly formed and were still crystalline after this step were included in our
free-energy calculations. Formore details, see Supplementary Information.

For the calculation of the total entropy Stot at T = 0, we use thermodynamic
integration over the temperature. As the potential energy of all phases decreases
exponentially at low temperatures, extrapolation to zero temperature is
straightforward, and integrating over the exponential decay allows us to
directly calculate the entropy at T = 0. The common tangent constructions at zero
temperature are shown in the Supplementary Information.

To calculate the vibrational entropy Svib in the liquid phase, we use the
Frenkel–Ladd method on a fully bonded configuration taken from a simulation at
low temperature. The network topology is kept fixed during the calculation. To
reduce the maximum spring constant required in the integration, we first optimize
the configuration in a separate MC simulation biased towards configurations
where small displacements of particles do not cause overlaps or break bonds. See
Supplementary Information for more information.

We use EDMD simulations for calculating the equations of state and potential
energies required for thermodynamic integration, and to investigate the dynamics of
the low-temperature liquid phase30,31. For a full description of the implementation

of the Kern–Frenkel model in EDMD simulations, see Supplementary Information.
For all EDMD simulations used here, the simulation box is chosen to be cubic or
rectangular, with periodic boundary conditions. The simulations are performed
at fixed number of particles N , volume V and temperature T . The temperature is
regulated by means of a thermostat: at regular intervals, a random particle is given a
new velocity and angular velocity, drawn from a Maxwell–Boltzmann distribution.
Time is measured in units of τ =

√
βmσ 2, with m being the mass of a particle. For

the simulations in this study, we chose the moment of inertia I =mσ 2. Note that
the choice of mass or moment of inertia has no effect on the equilibrium phase
behaviour. Bond switching moves in the EDMD simulation (see Supplementary
Information) are events that happen at a fixed rate γ for each patch in the system,
such that per time unit τ each patch experiences γ τ attempts to form, switch or
break a bond. Diffusion coefficients were obtained from the slope of the mean
squared displacement as a function of time. The system sizes (ranging fromN =512
to 64,000) were chosen to ensure that the number of broken bonds in the system
would be at least one on average, for the temperatures under consideration.
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