Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular motors robustly drive active gels to a critically connected state

Abstract

Living systems naturally exhibit internal driving: active, molecular processes drive non-equilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, in which molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behaviour occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we developed a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experiments with motor-driven networks show that initial connectivity controls the length scale of contraction.
Figure 2: Cluster size distributions depend on network connectivity, exhibiting power-law distributions when ξ1ξ2L.
Figure 3: Simulations show that motors can drive initially well-connected networks to a critical state.
Figure 4: Simulation and experiment both show that increased motor force reduces cluster size.
Figure 5: The critically connected regime broadens with increasing force.

Similar content being viewed by others

References

  1. Fielding, S. M., Cates, M. E. & Sollich, P. Shear banding, aging and noise dynamics in soft glassy materials. Soft Matter 5, 2378–2382 (2009).

    ADS  Google Scholar 

  2. Vissers, T., van Blaaderen, A. & Imhof, A. Band formation in mixtures of oppositely charged colloids driven by an ac electric field. Phys. Rev. Lett. 106, 228303 (2011).

    ADS  Google Scholar 

  3. Weeks, E., Crocker, J., Levitt, A., Schofield, A. & Weitz, D. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    ADS  Google Scholar 

  4. Corté, L., Chaikin, P. M., Gollub, J. P. & Pine, D. J. Random organization in periodically driven systems. Nature Phys. 4, 420–424 (2008).

    ADS  Google Scholar 

  5. Van Hecke, M. Jamming of soft particles: Geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22, 033101 (2009).

    ADS  Google Scholar 

  6. Jülicher, F., Kruse, K., Prost, J. & Joanny, J-F. Active behavior of the cytoskeleton. Phys. Rep. 449, 3–28 (2007).

    ADS  MathSciNet  Google Scholar 

  7. Zemel, A., De, R. & Safran, S. A. Mechanical consequences of cellular force generation. Curr. Opin. Solid St. M. 15, 169–176 (2011).

    Google Scholar 

  8. Nédélec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    ADS  Google Scholar 

  9. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    ADS  Google Scholar 

  10. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    ADS  Google Scholar 

  11. Koenderink, G. H. et al. An active biopolymer network controlled by molecular motors. Proc. Natl Acad. Sci. USA 106, 15192–15197 (2009).

    ADS  Google Scholar 

  12. Joanny, J-F. & Prost, J. Active gels as a description of the actin-myosin cytoskeleton. HFSP J. 3, 94–104 (2009).

    Google Scholar 

  13. Wang, S. & Wolynes, P. G. Tensegrity and motor-driven effective interactions in a model cytoskeleton. J. Chem. Phys. 136, 145102 (2012).

    ADS  Google Scholar 

  14. Backouche, F., Haviv, L., Groswasser, D. & Bernheim-Groswasser, A. Active gels: Dynamics of patterning and self-organization. Phys. Biol. 3, 264–273 (2006).

    ADS  Google Scholar 

  15. Smith, D. et al. Molecular motor-induced instabilities and cross linkers determine biopolymer organization. Biophys. J. 93, 4445–4452 (2007).

    ADS  Google Scholar 

  16. Soares e Silva, M. et al. Active multistage coarsening of actin networks driven by myosin motors. Proc. Natl Acad. Sci. USA 108, 9408–9413 (2011).

    ADS  Google Scholar 

  17. Köhler, S., Schaller, V. & Bausch, A. R. Structure formation in active networks. Nature Mater. 10, 462–468 (2011).

    ADS  Google Scholar 

  18. Bendix, P. M. et al. A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys. J. 94, 3126–3136 (2008).

    ADS  Google Scholar 

  19. Köhler, S. & Bausch, A. R. Contraction mechanisms in composite active actin networks. PLOS One 7, e39869 (2012).

    ADS  Google Scholar 

  20. Wang, S. & Wolynes, P. G. Active contractility in actomyosin networks. Proc. Natl Acad. Sci. USA 109, 6446–6451 (2012).

    ADS  Google Scholar 

  21. Wyart, M., Liang, H., Kabla, A. & Mahadevan, L. Elasticity of floppy and stiff random networks. Phys. Rev. Lett. 101, 215501 (2008).

    ADS  Google Scholar 

  22. Broedersz, C. P., Mao, X., Lubensky, T. C. & MacKintosh, F. C. Criticality and isostaticity in fibre networks. Nature Phys. 7, 983–988 (2011).

    ADS  Google Scholar 

  23. Sheinman, M., Broedersz, C. P. & MacKintosh, F. C. Nonlinear effective-medium theory of disordered spring networks. Phys. Rev. E 85, 021801 (2012).

    ADS  Google Scholar 

  24. Sheinman, M., Broedersz, C. & MacKintosh, F. Actively stressed marginal networks. Phys. Rev. Lett. 109, 238101 (2012).

    ADS  Google Scholar 

  25. Weber, C., Schaller, V., Bausch, A. & Frey, E. Nucleation-induced transition to collective motion in active systems. Phys. Rev. E 86, 030901 (2012).

    ADS  Google Scholar 

  26. Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor Francis, 1994).

    MATH  Google Scholar 

  27. Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  28. Haviv, L., Gillo, D., Backouche, F. & Bernheim-Groswasser, A. A cytoskeletal demolition worker: Myosin II acts as an actin depolymerization agent. J. Mol. Biol. 375, 325–330 (2008).

    Google Scholar 

  29. Murrell, M. P. & Gardel, M. L. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl Acad. Sci. USA 109, 20820–20825 (2012).

    ADS  Google Scholar 

  30. Vogel, S. K., Petrasek, Z., Heinemann, F. & Schwille, P. Myosin motors fragment and compact membrane-bound actin filaments. eLife 2, e00116 (2013).

    Google Scholar 

  31. Courson, D. S. & Rock, R. S. Actin cross-link assembly and disassembly mechanics for alpha-actinin and fascin. J. Biol. Chem. 285, 26350–26357 (2010).

    Google Scholar 

  32. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Google Scholar 

  33. Ishikawa, R., Sakamoto, T., Ando, T., Higashi-Fujime, S. & Kohama, K. Polarized actin bundles formed by human fascin-1: Their sliding and disassembly on myosin II and myosin V in vitro. J. Neurochem. 87, 676–685 (2003).

    Google Scholar 

  34. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    ADS  Google Scholar 

  35. Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007).

    ADS  Google Scholar 

  36. MacKintosh, F. C. & Levine, A. J. Nonequilibrium mechanics and dynamics of motor-activated gels. Phys. Rev. Lett. 100, 018104 (2008).

    ADS  Google Scholar 

  37. Liverpool, T. B., Marchetti, M. C., Joanny, J-F. & Prost, J. Mechanical response of active gels. Europhys. Lett. 85, 18007 (2009).

    ADS  Google Scholar 

  38. Lenz, M., Thoresen, T., Gardel, M. & Dinner, A. Contractile units in disordered actomyosin bundles arise from f-actin buckling. Phys. Rev. Lett. 108, 238107 (2012).

    ADS  Google Scholar 

  39. Koenderink, G. H., Atakhorrami, M., MacKintosh, F. C. & Schmidt, C. F. High-frequency stress relaxation in semiflexible polymer solutions and networks. Phys. Rev. Lett. 96, 13807 (2006).

    Google Scholar 

  40. Heussinger, C. Stress relaxation through crosslink unbinding in cytoskeletal networks. New J. Phys. 14, 095029 (2012).

    ADS  Google Scholar 

  41. Griffith, A. A. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921).

    ADS  Google Scholar 

  42. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009).

    ADS  Google Scholar 

  43. Camalet, S., Duke, T., Jülicher, F. & Prost, J. Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl Acad. Sci. USA 97, 3183–3188 (2000).

    ADS  Google Scholar 

  44. Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008).

    Google Scholar 

  45. Zhang, H. P., Be’er, A., Florin, E. L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. Proc. Natl Acad. Sci. USA 107, 13626–13630 (2010).

    ADS  Google Scholar 

  46. Mora, T. & Bialek, W. Are biological systems poised at criticality? J. Stat. Phys. 144, 1–35 (2011).

    MathSciNet  MATH  Google Scholar 

  47. Bialek, W. et al. Statistical mechanics for natural flocks of birds. Proc. Natl Acad. Sci. USA 109, 4786–4791 (2012).

    ADS  Google Scholar 

  48. Furusawa, C. & Kaneko, K. Adaptation to optimal cell growth through self-organized criticality. Phys. Rev. Lett. 108, 208103 (2012).

    ADS  Google Scholar 

  49. Halley, J. D. & Winkler, D. A. Critical-like self-organization and natural selection: Two facets of a single evolutionary process? BioSystems 92, 148–158 (2008).

    Google Scholar 

  50. Torres-Sosa, C., Huang, S. & Aldana, M. Criticality is an emergent property of genetic networks that exhibit evolvability. PLOS Comput. Biol. 8, e1002669 (2012).

    ADS  Google Scholar 

  51. Bertrand, O. J. N., Fygenson, D. K. & Saleh, O. A. Active, motor- driven mechanics in a DNA gel. Proc. Natl Acad. Sci. USA 109, 17342–17347 (2012).

    ADS  Google Scholar 

  52. Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    ADS  Google Scholar 

  53. Martin, A. C. et al. Integration of contractile forces during tissue invagination. J. Cell Biol. 188, 735–749 (2010).

    Google Scholar 

  54. Schwarz, U. & Safran, S. Elastic interactions of cells. Phys. Rev. Lett. 88, 048102 (2002).

    ADS  Google Scholar 

  55. Schwarz, U. S. & Gardel, M. L. United we stand—integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125, 3051–3060 (2012).

    Google Scholar 

  56. Gentry, B. S. et al. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening. Eur Biophys. J. 41, 979–990 (2012).

    Google Scholar 

Download references

Acknowledgements

This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). G.H.K. and J.A. were funded by a Vidi grant from the Netherlands Organisation for Scientific Research (NWO). We thank M. Kuit-Vinkenoog, M. Preciado-López and F. C. Tsai (AMOLF, Amsterdam, Netherlands) for help with purifications, S. Hansen and R. D. Mullins (UCSF, San Francisco, USA) for the fascin plasmid, K. Miura (EMBL, Heidelberg, Germany) for the Temporal Colour Code ImageJ plugin, as well as C. Broedersz (Princeton University, NJ, USA) and M.A.J. Michels (TU Eindhoven) for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.A. and G.H.K. designed the experiments. J.A. performed the experiments. M.S., A.S., and F.C.M. designed the simulations. M.S. and A.S. performed the simulations. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Fred C. MacKintosh or Gijsje H. Koenderink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1670 kb)

Supplementary Movie

Supplementary movie 1 (MOV 3622 kb)

Supplementary Movie

Supplementary movie 2 (MOV 1896 kb)

Supplementary Movie

Supplementary movie 3 (MOV 2110 kb)

Supplementary Movie

Supplementary movie 4 (MOV 3886 kb)

Supplementary Movie

Supplementary movie 5 (MOV 1083 kb)

Supplementary Movie

Supplementary movie 6 (MOV 1566 kb)

Supplementary Movie

Supplementary movie 7 (MOV 1285 kb)

Supplementary Movie

Supplementary movie 8 (MOV 3137 kb)

Supplementary Movie

Supplementary movie 9 (MOV 3889 kb)

Supplementary Movie

Supplementary movie 10 (MOV 3308 kb)

Supplementary Movie

Supplementary movie 11 (MOV 4501 kb)

Supplementary Movie

Supplementary movie 12 (MOV 805 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, J., Sheinman, M., Sharma, A. et al. Molecular motors robustly drive active gels to a critically connected state. Nature Phys 9, 591–597 (2013). https://doi.org/10.1038/nphys2715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing