Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zeeman-type spin splitting controlled by an electric field

This article has been updated

Abstract

Transition-metal dichalcogenides such as WSe2 and MoS2 have electronic band structures that are ideal for hosting many exotic spin–orbit phenomena. Here we investigate the possibility to generate and modulate a giant Zeeman-type spin polarization in WSe2 under an external electric field. By tuning the perpendicular electric field applied to the WSe2 channel with an electric-double-layer transistor, we observe a systematic crossover from weak localization to weak anti-localization in magnetotransport. Our optical reflection measurements also reveal an electrically tunable exciton splitting. Using first-principles calculations, we propose that these are probably due to the emergence of a merely out-of-plane and momentum-independent spin splitting at and in the vicinity of the vertices of the WSe2 Brillouin zone under electric field. The non-magnetic approach for creating such an intriguing spin splitting keeps the system time-reversally invariant, thereby suggesting a new method for manipulating the spin degrees of freedom of electrons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rashba effect versus Zeeman effect and the electronic structure of bulk 2H–WSe2.
Figure 2: Electronic transport in a WSe2 EDLT with ionic liquid gating.
Figure 3: SOI-induced crossover from WL to WAL in WSe2 EDLTs.
Figure 4: Effect of external electric field on the band structures of WSe2.
Figure 5: Origin of out-of-plane spin polarization in WSe2 under the external electric field.

Similar content being viewed by others

Change history

  • 19 August 2013

    In the version of this Article originally published online, the equation in the first paragraph should have been: Ĥso = -μBσ · (p × E/2mc2). Also, throughout the Article, Beff should have appeared as a vector. These errors have been corrected in all versions of the Article.

References

  1. Murakami, S., Nagaosa, N. & Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  ADS  Google Scholar 

  2. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    Article  ADS  Google Scholar 

  3. Lu, J. P. et al. Tunable spin-splitting and spin-resolved ballistic transport in GaAs/AlGaAs two-dimensional holes. Phys. Rev. Lett. 81, 1282–1285 (1998).

    Article  ADS  Google Scholar 

  4. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  ADS  Google Scholar 

  5. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. J. Exp. Theor. Phys. Lett. 39, 78–81 (1984).

    Google Scholar 

  6. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  7. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48 As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  ADS  Google Scholar 

  8. Koga, T., Nitta, J., Takayanagi, H. & Datta, S. Spin-filter device based on the Rashba effect using a non-magnetic triple barrier resonant tunnel diode. Phys. Rev. Lett. 88, 126601 (2002).

    Article  ADS  Google Scholar 

  9. Lommer, G., Malcher, F. & Rossler, U. Spin splitting in semiconductor heterostructures for B0. Phys. Rev. Lett. 60, 728–731 (1988).

    Article  ADS  Google Scholar 

  10. Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article  ADS  Google Scholar 

  11. Shalom, M. B., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin–orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

    Article  ADS  Google Scholar 

  12. Ohno, Y., Terauchi, R., Adachi, T., Matsukura, F. & Ohno, H. Spin relaxation in GaAs(110) quantum wells. Phys. Rev. Lett. 83, 4196–4199 (1999).

    Article  ADS  Google Scholar 

  13. Winkler, R. Spin orientation and spin precession in inversion-asymmetric quasi-two-dimensional electron systems. Phys. Rev. B 69, 045317 (2004).

    Article  ADS  Google Scholar 

  14. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nature Mater. 7, 900–906 (2008).

    Article  ADS  Google Scholar 

  15. Misra, R., McCarthy, M. & Hebard, A. F. Electric field gating with ionic liquids. Appl. Phys. Lett. 90, 52905–52907 (2007).

    Article  ADS  Google Scholar 

  16. Yuan, H. T. et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of Ionic Liquids. Adv. Funct. Mater. 19, 1046–1053 (2009).

    Article  Google Scholar 

  17. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008).

    Article  ADS  Google Scholar 

  18. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nature Mater. 9, 125–128 (2010).

    Article  ADS  Google Scholar 

  19. Ueno, K. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nature Nanotech. 6, 408–412 (2011).

    Article  ADS  Google Scholar 

  20. Yuan, H. T. et al. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. J. Am. Chem. Soc. 132, 18402–18407 (2010).

    Article  Google Scholar 

  21. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  22. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  23. Podzorov, V., Gershenson, M. E., Kloc, Ch., Zeis, R. & Bucher, E. High mobility ambipolar field effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).

    Article  ADS  Google Scholar 

  24. Koga, T., Nitta, J., Akazaki, T. & Takayanagi, H. Rashba spin–orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. Phys. Rev. Lett. 89, 046801 (2002).

    Article  ADS  Google Scholar 

  25. Thillosen, N. et al. Weak antilocalization in gate-controlled AlxGa1−xN/GaN two-dimensional electron gases. Phys. Rev. B 73, 241311 (2006).

    Article  ADS  Google Scholar 

  26. Nitta, J., Meijer, F. E. & Takayanagi, H. Spin-interference device. Appl. Phys. Lett. 75, 695–697 (1999).

    Article  ADS  Google Scholar 

  27. Knap, W. et al. Weak antilocalization and spin precession in quantum wells. Phys. Rev. B 53, 3912–3924 (1996).

    Article  ADS  Google Scholar 

  28. Winkler, R. Spin–Orbit Coupling Effects in Two-dimensional Electron and Hole Systems (Springer Tracts in Modern Physics, Vol. 191, Springer, 2003).

    Book  Google Scholar 

  29. Kohda, M, Bergsten, T. & Nitta, J. Manipulating spin–orbit interaction in semiconductors. J. Phys. Soc. Jpn 77, 031008 (2008).

    Article  ADS  Google Scholar 

  30. Iordanskii, S. V., Lyanda-Geller, Y. B. & Pikus, G. E. Weak localization in quantum wells with spin–orbit interaction. JETP Lett. 60, 206–211 (1994).

    ADS  Google Scholar 

  31. Maekawa, S. & Fukuyama, H. Magnetoresistance in two-dimensional disordered systems: Effects of Zeeman splitting and spin–orbit scattering. J. Phys. Soc. Jpn 50, 2516–2524 (1981).

    Article  ADS  Google Scholar 

  32. Beal, A. R., Liang, W. Y. & Hughes, H. P. Kramers-Kroning analysis of the refelectivity spectra of 3R–WSe2 and 2H–WSe2 . J. Phys. C 9, 2449–2457 (1976).

    Article  ADS  Google Scholar 

  33. Coehoorn, R., Haas, C. & Groot, R. A. de The electronic structure of MoSe2, MoS2 and WSe2. II the nature of optical band gaps. Phys. Rev. B 35, 6203–6206 (1987).

    Article  ADS  Google Scholar 

  34. Fu, L. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3 . Phys. Rev. Lett. 103, 266801 (2009).

    Article  ADS  Google Scholar 

  35. Bahramy, M. S., Yang, B. J., Arita, R. & Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Commun. 3, 679 (2012).

    Article  ADS  Google Scholar 

  36. Wang, W. T. et al. Dresselhaus effect in bulk wurtzite materials. Appl. Phys. Lett. 91, 082110 (2007).

    Article  ADS  Google Scholar 

  37. Schäfer, P. et al. Three-dimensional spin rotations at the Fermi surface of a strongly spin–orbit coupled surface system. Phys. Rev. Lett. 108, 186801 (2012).

    Article  ADS  Google Scholar 

  38. Oguchi, T. & Shishidou, T. The surface Rashba effect: a k·p perturbation approach. J. Phys. Condens. Matter 21, 092001-1-6 (2009).

    Article  ADS  Google Scholar 

  39. Zhu, Z. Y., Cheng, C. Y. & Schwingenschlg, U. Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Article  ADS  Google Scholar 

  40. Bahramy, M. S., Arita, R. & Nagaosa, N. Origin of giant bulk Rashba splitting: Application to BiTeI. Phys. Rev. B 84, 041202(R) (2011).

    Article  ADS  Google Scholar 

  41. Davis, J. The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge Univ. Press, 1998).

    Google Scholar 

  42. Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nature Phys. 1, 31–35 (2005).

    Article  ADS  Google Scholar 

  43. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  ADS  Google Scholar 

  44. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3365–3868 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Kohda, Y. Tokura and A. Tsukazaki for stimulating discussions. This research was partly supported by the Strategic International Collaborative Research Program (SICORP), Japan Science and Technology Agency, Grant-in-Aid for Scientific Research (S) (No. 21224009), for Specially Promoted Research (No. 25000003) and the ‘Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)’ from JSPS, Japan. S.W. and X.X. are supported by the US DoE, BES, Division of Materials Sciences and Engineering (DE-SC0008145).

Author information

Authors and Affiliations

Authors

Contributions

H.Y., M.S.B. and K.M. contributed equally to this work. H.Y., M.S.B., R.A. and Y.I. conceived and designed the experiments and theoretical calculation. H.Y. performed the planning, sample fabrication, cryogenic transport measurements and data analysis. M.S.B. and R.A. performed all DFT calculations and data analyses. S.W. and X.X. performed all optical measurement and related data analyses. K.M and H.S. assisted with EDLT device fabrication, transport measurements and data analyses. K.N. and B-J.Y. assisted with the analysis of magnetotransport data. M.T. and C.K. grew the pristine WSe2 single crystals. N.N. and Y.I. led experiments and physical discussions. H.Y., M.S.B. and Y.I. wrote the manuscript.

Corresponding authors

Correspondence to Hongtao Yuan, Mohammad Saeed Bahramy or Yoshihiro Iwasa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1005 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, H., Bahramy, M., Morimoto, K. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys 9, 563–569 (2013). https://doi.org/10.1038/nphys2691

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2691

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing