Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Noise focusing and the emergence of coherent activity in neuronal cultures

Abstract

At early stages of development, neuronal cultures in vitro spontaneously reach a coherent state of collective firing in a pattern of nearly periodic global bursts. Although understanding the spontaneous activity of neuronal networks is of chief importance in neuroscience, the origin and nature of that pulsation has remained elusive. By combining high-resolution calcium imaging with modelling in silico, we show that this behaviour is controlled by the propagation of waves that nucleate randomly in a set of points that is specific to each culture and is selected by a non-trivial interplay between dynamics and topology. The phenomenon is explained by the noise focusing effect—a strong spatio-temporal localization of the noise dynamics that originates in the complex structure of avalanches of spontaneous activity. Results are relevant to neuronal tissues and to complex networks with integrate-and-fire dynamics and metric correlations, for instance, in rumour spreading on social networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental observation of nucleation and propagation.
Figure 2: Spatial distribution of nucleation sites in experiments.
Figure 3: Statistics of background avalanches.
Figure 4: Dynamics of ignition avalanches.
Figure 5: Nucleation statistics and noise focusing.
Figure 6: Noise amplification mechanisms.

Similar content being viewed by others

References

  1. Bullmore, E. & Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 186–198 (2009).

    Article  Google Scholar 

  2. Chialvo, D. R. Emergent complex neural dynamics. Nature Phys. 6, 744–750 (2010).

    Article  ADS  Google Scholar 

  3. Spitzer, N. C. Electrical activity in early neuronal development. Nature 444, 707–712 (2006).

    Article  ADS  Google Scholar 

  4. Blankenship, A. G. & Feller, M. B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature Rev. Neurosci. 11, 18–29 (2010).

    Article  Google Scholar 

  5. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  ADS  Google Scholar 

  6. Sanchez-Vives, M. V. & McCormick, D. A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neurosci. 3, 1027–1034 (2000).

    Article  Google Scholar 

  7. Ruiz-Mejias, M., Ciria-Suarez, L., Mattia, M. & Sanchez-Vives, M. V. Slow and fast rhythms generated in the cerebral cortex of the anesthetized mouse. J. Neurophysiol. 106, 2910–2921 (2011).

    Article  Google Scholar 

  8. Soto, F., Ma, X., Cecil, J. L., Vo, B. Q., Culican, S. M. & Kerschensteiner, D. Spontaneous activity promotes synapse formation in a cell-type-dependent manner in the developing retina. J. Neurosci. 32, 5426–5439 (2012).

    Article  Google Scholar 

  9. Tscherter, A., Heuschkel, M. O., Renaud, P. & Streit, J. Spatiotemporal characterization of rhythmic activity in rat spinal cord slice cultures. Eur. J. Neurosci. 14, 179–190 (2001).

    Article  Google Scholar 

  10. Eckmann, J-P., Feinerman, O., Gruendlinger, L., Moses, E., Soriano, J. & Tlusty, T. The physics of living neural networks. Phys. Rep. 449, 54–76 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  11. Levina, A., Herrmann, J. M. & Geisel, T. Dynamical synapses causing self-organized criticality in neural networks. Nature Phys. 3, 857–860 (2007).

    Article  ADS  Google Scholar 

  12. Soriano, J., Rodrı´guez Martı´nez, M., Tlusty, T. & Moses, E. Development of input connections in neural cultures. Proc. Natl Acad. Sci. USA 105, 13758–13763 (2008).

    Article  ADS  Google Scholar 

  13. Feinerman, O., Rotem, A. & Moses, E. Reliable neuronal logic devices from patterned hippocampal cultures. Nature Phys. 4, 967–973 (2008).

    Article  ADS  Google Scholar 

  14. Cohen, O., Keselman, A., Moses, E., Rodríguez Martínez, M., Soriano, J. & Tlusty, T. Quorum percolation in living neural networks. Europhys. Lett. 89, 18008 (2010).

    Article  ADS  Google Scholar 

  15. Maeda, E., Robinson, H. P. & Kawana, A. The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. J. Neurosci. 15, 6834–6845 (1995).

    Article  Google Scholar 

  16. Opitz, T., de Lima, A. D. & Voigt, T. Spontaneous development of synchronous oscillatory activity during maturation of cortical networks in vitro. J. Neurophysiol. 88, 2196–2206 (2002).

    Article  Google Scholar 

  17. Marom, S. & Shahaf, G. Development, learning and memory in large random networks of cortical neurons: Lessons beyond anatomy. Quart. Rev. Biophys. 35, 63–87 (2002).

    Article  Google Scholar 

  18. Wagenaar, D. A., Pine, J. & Potter, S. M. An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci. 7, 11 (2006).

    Article  Google Scholar 

  19. Cohen, E., Ivenshitz, M., Amor-Baroukh, V., Greenberger, V. & Segal, M. Determinants of spontaneous activity in networks of cultured hippocampus. Brain Res. 1235, 21–30 (2008).

    Article  Google Scholar 

  20. Ham, M. I., Bettencourt, L. M., McDaniel, F. D. & Gross, G. W. Spontaneous coordinated activity in cultured networks: Analysis of multiple ignition sites, primary circuits, and burst phase delay distributions. J. Comput. Neurosci. 24, 346–357 (2008).

    Article  Google Scholar 

  21. Feinerman, O., Segal, M. & Moses, E. Identification and dynamics of spontaneous burst initiation zones in unidimensional neuronal cultures. J. Neurophysiol. 97, 2937–2948 (2007).

    Article  Google Scholar 

  22. Eytan, D. & Marom, S. Dynamics and effective topology underlying synchronization in networks of cortical neurons. J. Neurosci. 26, 8465–8476 (2006).

    Article  Google Scholar 

  23. Eckmann, J-P., Jacobi, S., Marom, S., Moses, E. & Zbinden, C. Leader neurons in population bursts of 2D living neural networks. New J. Phys. 10, 5011 (2008).

    Article  Google Scholar 

  24. Eckmann, J-P., Moses, E., Stetter, O., Tlusty, T. & Zbinden, C. Leaders of neuronal cultures in a quorum percolation model. Front. Comput. Neurosci. 4, 132 (2010).

    Article  Google Scholar 

  25. Segev, R., Baruchi, I., Hulata, E. & Ben-Jacob, E. Hidden neuronal correlations in cultured networks. Phys. Rev. Lett. 92, 118102 (2004).

    Article  ADS  Google Scholar 

  26. Baruchi, I., Volman, V., Raichman, N., Shein, M. & Ben-Jacob, E. The emergence and properties of mutual synchronization in in vitro coupled cortical networks. Eur. J. Neurosci. 28, 1825–1835 (2008).

    Article  Google Scholar 

  27. Tabak, J. & Latham, P. E. Analysis of spontaneous bursting activity in random neural networks. Neuroreport 14, 1445–1449 (2003).

    Article  Google Scholar 

  28. Latham, P. E., Richmond, B. J., Nirenberg, S. & Nelson, P. G. Intrinsic dynamics in neuronal networks. II. Experiment. J. Neurophysiol. 83, 828–835 (2000).

    Article  Google Scholar 

  29. Jacobi, S., Soriano, J. & Moses, E. BDNF and NT-3 increase velocity of activity front propagation in unidimensional hippocampal cultures. J. Neurophysiol. 104, 2932–2939 (2010).

    Article  Google Scholar 

  30. Cohen, D. & Segal, M. Network bursts in hippocampal microcultures are terminated by exhaustion of vesicle pools. J. Neurophysiol. 106, 2314–2321 (2011).

    Article  Google Scholar 

  31. Shein, M., Volman, V., Raichman, N., Hanein, Y. & Ben-Jacob, E. Management of synchronized network activity by highly active neurons. Phys. Biol. 5, 036008 (2008).

    Article  ADS  Google Scholar 

  32. Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003).

    Article  Google Scholar 

  33. Alvarez-Lacalle, E. & Moses, E. Slow and fast pulses in 1-D cultures of excitatory neurons. J. Comput. Neurosci. 26, 475–493 (2009).

    Article  MathSciNet  Google Scholar 

  34. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Article  Google Scholar 

  35. Beggs, J. M. & Plenz, D. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229 (2004).

    Article  Google Scholar 

  36. Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E. & Torre, V. On the dynamics of the spontaneous activity in neuronal networks. PLoS ONE 2, e439 (2007).

    Article  ADS  Google Scholar 

  37. Tetzlaff, C., Okujeni, S., Egert, U., Wörgötter, F. & Butz, M. Self-organized criticality in developing neuronal networks. PLoS Comput. Biol. 6, e1001013 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  38. Levina, A., Herrmann, J. M. & Geisel, T. Phase transitions towards criticality in a neural system with adaptive interactions. Phys. Rev. Lett. 102, 118110 (2009).

    Article  ADS  Google Scholar 

  39. Millman, D., Mihalas, S., Kirkwood, A. & Niebur, E. Self-organized criticality occurs in non-conservative neuronal networks during ‘up’ states. Nature Phys. 6, 801–805 (2010).

    Article  ADS  Google Scholar 

  40. Albert, R. & Barabási, A-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  41. Tlusty, T. & Eckmann, J-P. Remarks on bootstrap percolation in metric networks. J. Phys. A 42, 205004 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  42. Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M. & Beggs, J. M. Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS ONE 6, e27431 (2011).

    Article  ADS  Google Scholar 

  43. Stetter, O., Battaglia, D., Soriano, J. & Geisel, T. Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Comput. Biol. 8, e1002653 (2012).

    ADS  MathSciNet  Google Scholar 

  44. Moons, W. G., Mackie, D. M. & Garcia-Marques, T. The impact of repetition-induced familiarity on agreement with weak and strong arguments. J. Pers. Soc. Psychol. 96, 32–44 (2009).

    Article  Google Scholar 

  45. Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E. & Makse, H. A. Identification of influential spreaders in complex networks. Nature Phys. 6, 888–893 (2010).

    Article  ADS  Google Scholar 

  46. Fagiolo, G. Clustering in complex directed networks. Phys. Rev. E 76, 26107 (2007).

    Article  ADS  Google Scholar 

  47. Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. Int. AAAI Conf. on Weblogs and Social Media (2009).

  48. Golomb, D. & Amitai, Y. Propagating neuronal discharges in neocortical slices: computational and experimental study. J. Neurophysiol. 78, 1199–1211 (1997).

    Article  Google Scholar 

  49. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997).

    ADS  Google Scholar 

  50. Blondel, V. D., Guillaume, J-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 10, 008 (2008).

    Google Scholar 

Download references

Acknowledgements

We thank T. Tlusty, E. Moses, and M.V. Sánchez-Vives for fruitful discussions. We acknowledge financial support from Ministerio de Ciencia e Innovación (Spain) under projects FIS2009-07523, and FIS2010-21924-C02-02, FIS2011-28820-C02-01 and the Generalitat de Catalunya under project 2009-SGR-00014.

Author information

Authors and Affiliations

Authors

Contributions

J.G.O. developed the model in silico, and performed the numerical simulations and data analysis. J.S. conceived and designed the experiments. J.G.O. and E.A-L. conceived the model in silico. J.S. and S.T. performed the experiments and analysed experimental data. J.G.O., E.A-L. and J.C. contributed to the theoretical analysis. J.C. developed analytical tools and the conceptual framework. All authors contributed to data interpretation and wrote the manuscript. J.S. and J.C. supervised the project.

Corresponding author

Correspondence to Javier G. Orlandi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2895 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 29201 kb)

Supplementary Movie

Supplementary Movie 2 (AVI 12296 kb)

Supplementary Movie

Supplementary Movie 3 (AVI 11015 kb)

Supplementary Movie

Supplementary Movie 4 (AVI 6679 kb)

Supplementary Movie

Supplementary Movie 5 (AVI 985 kb)

Supplementary Movie

Supplementary Movie 6 (AVI 8860 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlandi, J., Soriano, J., Alvarez-Lacalle, E. et al. Noise focusing and the emergence of coherent activity in neuronal cultures. Nature Phys 9, 582–590 (2013). https://doi.org/10.1038/nphys2686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing