Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spintronic magnetic anisotropy

Abstract

Superparamagnetism of magnetic adatoms and molecules—preferential alignment of their spins along an easy axis—is a useful effect for nanoscale applications as it prevents undesired spin reversal. The underlying magnetic anisotropy barrier—a quadrupolar energy splitting—originates from spin–orbit interaction and can nowadays be probed by electronic transport measurements. Here we predict that in a much broader class of systems, quantum dots with spins larger than 1/2, superparamagnetism can arise without spin–orbit interaction: by attaching them to ferromagnets, a quadrupolar spintronic exchange field is generated locally. It is observable by means of conductance measurements and leads to enhanced spin filtering even in a state with zero average spin. Analogously to the spintronic dipolar exchange field, giving rise to a local spin torque, the effect is susceptible to electric control and increases with tunnel coupling as well as with spin polarization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The origin of magnetic anisotropy splitting of a high-spin ground multiplet.
Figure 2: Effective exchange fields.
Figure 3: Spectroscopic features of spintronic anisotropy.
Figure 4: Spin filtering.

Similar content being viewed by others

References

  1. Brune, H. & Gambardella, P. Magnetism of individual atoms adsorbed on surfaces. Surf. Sci. 603, 1812–1830 (2009).

    Article  ADS  Google Scholar 

  2. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  3. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  ADS  Google Scholar 

  4. Mannini, M. et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Mater. 8, 194–197 (2009).

    Article  ADS  Google Scholar 

  5. Loth, S. et al. Controlling the state of quantum spins with electric currents. Nature Phys. 6, 340–344 (2010).

    Article  ADS  Google Scholar 

  6. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  ADS  Google Scholar 

  7. Tejada, J., Chudnovsky, E. M., del Barco, E., Hernandez, J. M. & Spiller, T. P. Magnetic qubits as hardware for quantum computers. Nanotechnology 12, 181–186 (2001).

    Article  ADS  Google Scholar 

  8. Miller, J. S. & Gatteschi, D. (eds) Themed issue: Molecule-based magnets. Chem. Soc. Rev. 40, 3053–3368 (2011).

  9. Parks, J. et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328, 1370–1373 (2010).

    Article  ADS  Google Scholar 

  10. Otte, A. et al. The role of magnetic anisotropy in the Kondo effect. Nature Phys. 4, 847–850 (2008).

    Article  ADS  Google Scholar 

  11. Zyazin, A. et al. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 10, 3307–3311 (2010).

    Article  ADS  Google Scholar 

  12. Mannini, M. et al. X-Ray magnetic circular dichroism picks out single-molecule magnets suitable for nanodevices. Adv. Mater. 21, 167–171 (2009).

    Article  Google Scholar 

  13. Rogez, G. et al. The quest for nanoscale magnets: The example of [Mn12] single molecule magnets. Adv. Mater. 21, 4323–4333 (2009).

    Article  Google Scholar 

  14. Kahle, S. et al. The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces. Nano Lett. 12, 518–521 (2012).

    Article  ADS  Google Scholar 

  15. Maekawa, S. (ed.) Concepts in Spin Electronics (Oxford Univ. Press, 2006).

  16. König, J. & Martinek, J. Interaction-driven spin precession in quantum-dot spin valves. Phys. Rev. Lett. 90, 166602 (2003).

    Article  ADS  Google Scholar 

  17. Sothmann, B. & König, J. Transport through quantum-dot spin valves containing magnetic impurities. Phys. Rev. B 82, 245319 (2010).

    Article  ADS  Google Scholar 

  18. Hauptmann, J., Paaske, J. & Lindelof, P. Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts. Nature Phys. 4, 373–376 (2008).

    Article  ADS  Google Scholar 

  19. Sindel, M. et al. Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study. Phys. Rev. B 76, 045321 (2007).

    Article  ADS  Google Scholar 

  20. Gaass, M. et al. Universality of the Kondo effect in quantum dots with ferromagnetic leads. Phys. Rev. Lett. 107, 176808 (2011).

    Article  ADS  Google Scholar 

  21. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. & Wingreen, N. Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  ADS  Google Scholar 

  22. Heinrich, A., Gupta, J., Lutz, C. & Eigler, D. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  ADS  Google Scholar 

  23. Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    Article  ADS  Google Scholar 

  24. Martinek, J. et al. Kondo effect in quantum dots coupled to ferromagnetic leads. Phys. Rev. Lett. 91, 127203 (2003).

    Article  ADS  Google Scholar 

  25. Pasupathy, A. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    Article  ADS  Google Scholar 

  26. Choi, M. S., Sánchez, D. & López, R. Kondo effect in a quantum dot coupled to ferromagnetic leads: A numerical renormalization group analysis. Phys. Rev. Lett. 92, 056601 (2004).

    Article  ADS  Google Scholar 

  27. Jo, M-H. et al. Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett. 6, 2014–2020 (2006).

    Article  ADS  Google Scholar 

  28. Romeike, C., Wegewijs, M. R., Hofstetter, W. & Schoeller, H. Quantum-tunneling-induced Kondo effect in single molecular magnets. Phys. Rev. Lett. 96, 196601 (2006).

    Article  ADS  Google Scholar 

  29. Žitko, R., Peters, R. & Pruschke, T. Properties of anisotropic magnetic impurities on surfaces. Phys. Rev. B 78, 224404 (2008).

    Article  ADS  Google Scholar 

  30. Misiorny, M., Weymann, I. & Barnaś, J. Influence of magnetic anisotropy on the Kondo effect and spin-polarized transport through magnetic molecules, adatoms, and quantum dots. Phys. Rev. B 84, 035445 (2011).

    Article  ADS  Google Scholar 

  31. Misiorny, M., Weymann, I. & Barnaś, J. Underscreened Kondo effect in S = 1 magnetic quantum dots: Exchange, anisotropy and temperature effects. Phys. Rev. B 86, 245415 (2012).

    Article  ADS  Google Scholar 

  32. Grove-Rasmussen, K. et al. Magnetic-field dependence of tunnel couplings in carbon nanotube quantum dots. Phys. Rev. Lett. 108, 176802 (2012).

    Article  ADS  Google Scholar 

  33. Hirjibehedin, C. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    Article  ADS  Google Scholar 

  34. Baumgärtel, M. M. E., Hell, M., Das, S. & Wegewijs, M. R. Transport and accumulation of spin anisotropy. Phys. Rev. Lett. 107, 087202 (2011).

    Article  ADS  Google Scholar 

  35. Tóth, A., Moca, C., Legeza, O. & Zaránd, G. Density matrix numerical renormalization group for non-Abelian symmetries. Phys. Rev. B 78, 245109 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge stimulating discussions with J. Barnaś, A. Cornia, S. Das, J. König, S. J. van der Molen, J. Splettstoesser, I. Weymann and H. van der Zant. The use of the SPINLAB computational facility and the open access Budapest flexible DM-NRG code35 (http://www.phy.bme.hu/~dmnrg/) is kindly acknowledged. We acknowledge the financial support from the DFG (FOR 912), the Foundation for Polish Science (M.M.) and the Alexander von Humboldt Foundation (M.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.R.W. conceived the idea. M.H. and M.M. performed the analytic and numerical calculations, respectively. M.H. provided M.M. and M.R.W. with fitting formulas for the physical analysis of DM-NRG results. M.M. prepared the initial manuscript. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Maarten R. Wegewijs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misiorny, M., Hell, M. & Wegewijs, M. Spintronic magnetic anisotropy. Nature Phys 9, 801–805 (2013). https://doi.org/10.1038/nphys2766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing