Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere

Abstract

Cosmic rays and solar energetic particles may be accelerated to relativistic energies by shock waves in astrophysical plasmas. On the Sun, shocks and particle acceleration are often associated with the eruption of magnetized plasmoids, called coronal mass ejections (CMEs). However, the physical relationship between CMEs and shock particle acceleration is not well understood. Here, we use extreme ultraviolet, radio and white-light imaging of a solar eruptive event on 22 September 2011 to show that a CME-induced shock (Alfvén Mach number ) was coincident with a coronal wave and an intense metric radio burst generated by intermittent acceleration of electrons to kinetic energies of 2–46 keV (0.1–0.4 c). Our observations show that plasmoid-driven quasiperpendicular shocks are capable of producing quasiperiodic acceleration of electrons, an effect consistent with a turbulent or rippled plasma shock surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AIA 21.1 nm images over-plotted with NRH 150.9 MHz contours.
Figure 2: Position angle (degrees anticlockwise from solar north) versus time for the 150 MHz source, shown in plus signs, and CBF at 1 R (circles) and 1.27 R (diamonds).
Figure 3: Radio dynamic spectra from STEREO-B/WAVES (0.01–16 MHz), Nançay DA (20–90 MHz) and RSTO eCallisto (10–400 MHz).
Figure 4: White-light CME observations and 3D reconstruction of the CME front.

Similar content being viewed by others

References

  1. Byrne, J. P., Maloney, S. A., McAteer, R. T. J., Refojo, J. M. & Gallagher, P. T. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nature Commun. 1, 74 (2010).

    Article  ADS  Google Scholar 

  2. Roussev, I. I. et al. Explaining fast ejections of plasma and exotic X-ray emission from the solar corona. Nature Phys. 8, 845–849 (2012).

    Article  ADS  Google Scholar 

  3. Vourlidas, A. et al. Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J. 722, 1522–1538 (2010).

    Article  ADS  Google Scholar 

  4. Klassen, A. et al. Solar energetic electron events and coronal shocks. Astron. Astrophys. 385, 1078–1088 (2002).

    Article  ADS  Google Scholar 

  5. Grechnev, V. V. et al. Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of EIT Waves, Type II radio bursts, and leading edges of CMEs. Sol. Phys. 273, 433–460 (2011).

    Article  ADS  Google Scholar 

  6. Vršnak, B. & Cliver, E. W. Origin of coronal shock waves. invited review. Sol. Phys. 253, 215–235 (2008).

    Article  ADS  Google Scholar 

  7. Drury, L. O. Origin of cosmic rays. Astropart. Phys. 39, 52–60 (2012).

    Article  ADS  Google Scholar 

  8. Wild, J. P. Observations of the spectrum of high-intensity solar radiation at metre wavelengths. III. Isolated bursts. Aust. J. Sci. Res. A 3, 541–557 (1950).

    ADS  Google Scholar 

  9. Mann, G. et al. Catalogue of solar type II radio bursts observed from September 1990 to December 1993 and their statistical analysis. Astron. Astrophys. Suppl. 119, 489–498 (1996).

    Article  ADS  Google Scholar 

  10. Mann, G. & Klassen, A. Electron beams generated by shock waves in the solar corona. Astron. Astrophys. 441, 319–326 (2005).

    Article  ADS  Google Scholar 

  11. Zlobec, P., Messerotti, M., Karlicky, M. & Urbarz, H. Fine structures in time profiles of type II bursts at frequencies above 200 MHz. Sol. Phys. 144, 373–384 (1993).

    Article  ADS  Google Scholar 

  12. Guo, F. & Giacalone, J. The effect of large-scale magnetic turbulence on the acceleration of electrons by perpendicular collisionless shocks. Astrophys. J. 715, 406–411 (2010).

    Article  ADS  Google Scholar 

  13. Gallagher, P. T. & Long, D. M. Large-scale bright fronts in the solar corona: A review of EIT waves. Space Sci. Rev. 158, 365–396 (2011).

    Article  ADS  Google Scholar 

  14. Gopalswamy, N. et al. EUV wave reflection from a coronal hole. Astrophys. J. 691, L123–L127 (2009).

    Article  ADS  Google Scholar 

  15. Wang, Y-M. EIT waves and fast-mode propagation in the solar corona. Astrophys. J. 543, L89–L93 (2000).

    Article  ADS  Google Scholar 

  16. Long, D. M., Gallagher, P. T., McAteer, R. T. J. & Bloomfield, D. S. Deceleration and dispersion of large-scale coronal bright fronts. Astron. Astrophys. 531, A42–A42 (2011).

    Article  ADS  Google Scholar 

  17. Maia, D. J. F. & Pick, M. Revisiting the origin of impulsive electron events: Coronal magnetic restructuring. Astrophys. J. 609, 1082–1097 (2004).

    Article  ADS  Google Scholar 

  18. Kozarev, K. A., Korreck, K. E., Lobzin, V. V., Weber, M. A. & Schwadron, N. A. Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations—Implications for particle production. Astrophys. J. 733, L25 (2011).

    Article  ADS  Google Scholar 

  19. Vršnak, B. et al. Broadband metric-range radio emission associated with a moreton/EIT wave. Astrophys. J. 625, L67–L70 (2005).

    Article  ADS  Google Scholar 

  20. Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A. & Otruba, W. A multiwavelength study of solar flare waves. II. Perturbation characteristics and physical interpretation. Astron. Astrophys. 418, 1117–1129 (2004).

    Article  ADS  Google Scholar 

  21. Zhukov, A. N., Rodriguez, L. & de Patoul, J. STEREO/SECCHI observations on 8 December 2007: Evidence against the wave hypothesis of the EIT wave origin. Sol. Phys. 259, 73–85 (2009).

    Article  ADS  Google Scholar 

  22. Delannée, C., Török, T., Aulanier, G. & Hochedez, J-F. A new model for propagating parts of EIT waves: A current shell in a CME. Sol. Phys. 247, 123–150 (2008).

    Article  ADS  Google Scholar 

  23. Kahler, S. W. Solar sources of heliospheric energetic electron events—Shocks or flares? Space Sci. Rev. 129, 359–390 (2007).

    Article  ADS  Google Scholar 

  24. Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The solar dynamics observatory (SDO). Sol. Phys. 275, 3–15 (2012).

    Article  ADS  Google Scholar 

  25. Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012).

    Article  ADS  Google Scholar 

  26. Kerdraon, A. & Delouis, J-M. in Coronal Physics from Radio and Space Observations Vol. 483 (ed. Trottet, G.) 192–201 (Lecture Notes in Physics, Springer, 1997).

    Book  Google Scholar 

  27. Dulk, G. A. Radio emission from the sun and stars. Annu. Rev. Astron. Astrophys. 23, 169–224 (1985).

    Article  ADS  Google Scholar 

  28. Boischot, A. et al. A new high-gain, broadband, steerable array to study Jovian decametric emission. Icarus 43, 399–407 (1980).

    Article  ADS  Google Scholar 

  29. Bougeret, J. L. et al. S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. 136, 487–528 (2008).

    Article  ADS  Google Scholar 

  30. Benz, A. O. et al. A world-wide net of solar radio spectrometers: e-CALLISTO. Earth Moon and Planets 104, 277–285 (2009).

    Article  ADS  Google Scholar 

  31. Zucca, P. et al. Observations of low frequency solar radio bursts from the Rosse solar-terrestrial observatory. Sol. Phys. 280, 591–602 (2012).

    Article  ADS  Google Scholar 

  32. Burgess, D. Simulations of electron acceleration at collisionless shocks: The effects of surface fluctuations. Astrophys. J. 653, 316–324 (2006).

    Article  ADS  Google Scholar 

  33. Stewart, R. T. & Magun, A. Radio evidence for electron acceleration by transverse shock waves in herringbone Type II solar bursts. Proc. Astron. Soc. Aust. 4, 53–55 (1980).

    Article  ADS  Google Scholar 

  34. Schmidt, J. M. & Cairns, I. H. Type II radio bursts: 2. Application of the new analytic formalism. J. Geophys. Res. 117, 11104 (2012).

    Google Scholar 

  35. Brueckner, G. E. et al. The large angle spectroscopic coronagraph (LASCO). Sol. Phys. 162, 357–402 (1995).

    Article  ADS  Google Scholar 

  36. Vourlidas, A., Lynch, B. J., Howard, R. A. & Li, Y. How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Sol. Phys. 192 (2012).

  37. Maloney, S. A. & Gallagher, P. T. STEREO direct imaging of a coronal mass ejection-driven shock to 0.5 AU. Astrophys. J. 736, L5 (2011).

    Article  ADS  Google Scholar 

  38. Feng, S. W. et al. Radio signatures of coronal-mass-ejection-streamer interaction and source diagnostics of type II radio burst. Astrophys. J. 753, 21 (2012).

    Article  ADS  Google Scholar 

  39. Feng, S. W. et al. Diagnostics on the source properties of a type II radio burst with spectral bumps. Astrophys. J. 767, 29 (2013).

    Article  ADS  Google Scholar 

  40. Bain, H. M., Krucker, S., Glesener, L. & Lin, R. P. Radio imaging of shock-accelerated electrons associated with an erupting plasmoid on 2010 November 3. Astrophys. J. 750, 44 (2012).

    Article  ADS  Google Scholar 

  41. Ball, L. & Melrose, D. B. Shock drift acceleration of electrons. Publ. Astron. Soc. Aust. 18, 361–373 (2001).

    Article  ADS  Google Scholar 

  42. Wu, C. S. A fast Fermi process—Energetic electrons accelerated by a nearly perpendicular bow shock. J. Geophys. Res. 89, 8857–8862 (1984).

    Article  ADS  Google Scholar 

  43. Holman, G. D. & Pesses, M. E. Solar type II radio emission and the shock drift acceleration of electrons. Astrophys. J. 267, 837–843 (1983).

    Article  ADS  Google Scholar 

  44. Guo, F. & Giacalone, J. Particle acceleration at a flare termination shock: Effect of large-scale magnetic turbulence. Astrophys. J. 753, 28–28 (2012).

    Article  ADS  Google Scholar 

  45. Vandas, M. & Karlický, M. Electron acceleration in a wavy shock front. Astron. Astrophys. 531, A55 (2011).

    Article  ADS  Google Scholar 

  46. Lowe, R. E. & Burgess, D. The properties and causes of rippling in quasi-perpendicular collisionless shock fronts. Ann. Geophys. 21, 671–679 (2003).

    Article  ADS  Google Scholar 

  47. Aurass, H. & Mann, G. Radio observation of electron acceleration at solar flare reconnection outflow termination shocks. Astrophys. J. 615, 526–530 (2004).

    Article  ADS  Google Scholar 

  48. Van Haarlem, M. P. et al. LOFAR: The low-frequency array. Astron. Astrophys. 556, A2 (2013).

    Article  Google Scholar 

  49. Stewart, R. T. & McLean, D. J. Correcting low-frequency solar radio source positions for ionospheric refraction. Proc. Astron. Soc. Australia 4, 386–389 (1982).

    Article  ADS  Google Scholar 

  50. Long, D. M., DeLuca, E. E. & Gallagher, P. T. The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J. 741, L21 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank NASA’s SDO, STEREO and ESA/NASA’s SOHO teams, and the Nançay Radio Astronomy Observatory for providing open access to their data. Financial support of E.P.C. was provided by the Irish Research Council Embark Initiative. D.M.L. is financially supported by the European Commission’s Seventh Framework Programme under the grant agreement No. 284461 (eHEROES project). J.P.B. is supported by SHINE grant 0962716 and NASA grants NNX08AJ07G and NNX13AG11G to the Institute for Astronomy. P.Z. is financially supported at present under the Trinity College Dublin Innovation Academy Bursary. D.S.B. is financially supported under the ESA PRODEX programme. We would also like to extend thanks to the Birr Scientific and Heritage Foundation, supported by the Earl of Rosse. Special thanks is extended to C. Monstein for his support in setting up the Callisto spectrometers and J. Magdalenić for very useful scientific discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.P.C. performed the data analysis of the radio source kinematics, the radio burst analysis, the Alfvén Mach number calculations, and the in situ particle analysis. E.P.C. also wrote the article. D.M.L. performed the data analysis of the coronal bright front and gave constructive advice on the writing of the article. J.P.B. performed the 3D reconstruction of the CME and gave advice on the white-light shock analysis section. P.Z. provided the density maps, and D.S.B. provided the magnetic field maps that were used in the radio source and CBF Mach number calculations. J.M. installed the electronic systems at RSTO. P.T.G. conceived of the project and guided data analysis and writing of the article.

Corresponding author

Correspondence to Peter T. Gallagher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 801 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 23453 kb)

Supplementary Movie

Supplementary Movie 2 (MP4 16090 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carley, E., Long, D., Byrne, J. et al. Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nature Phys 9, 811–816 (2013). https://doi.org/10.1038/nphys2767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing