Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction-driven localization in holography

Abstract

Interaction-driven charge localization across a quantum phase transition involves a fundamental rearrangement of the low-energy degrees of freedom. This fact challenges weakly interacting quasiparticle descriptions of the physics. The canonical example of such localization is the Mott transition. Here, we present a localization mechanism distinct from ‘Mottness’, which employs strong interactions in an essential way. Our mechanism allows anisotropic localization: phases can arise that are insulating in some directions and metallic in others. The central observation is that localization occurs if an operator that breaks translation invariance, a ‘generalized Umklapp’ operator, becomes relevant in the effective low-energy theory. This does not occur at weak coupling. We realize such localization in a strongly interacting theory described by means of the holographic correspondence. Our model captures key features of metal–insulator transitions including major spectral weight transfer and bad (incoherent) metallic behaviour in the vicinity of the transition. The localized phase has a power law gap in the optical conductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Two renormalization group flow scenarios that arise in our theories, mediating quantum phase transitions between metallic and insulating phases.
Figure 3: A quantum phase transition.
Figure 4: Spectral weight transfer.
Figure 5: Log–log plot of the d.c. resistivity as a function of temperature.

Similar content being viewed by others

References

  1. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1236 (1998).

    ADS  Google Scholar 

  2. Dobrosavljevic, V. in Conductor Insulator Quantum Phase Transitions (eds Dobrosavljevic, V., Trivedi, N. & Valles, J. M. Jr) (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  3. Basov, D. N., Averitt, R. D., van der Marel, D, Dressel, M. & Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011).

    ADS  Google Scholar 

  4. Hussey, N. E., Takenaka, K. & Takagi, H. Universality of the Mott–Ioffe–Regel limit in metals. Phil. Mag. 84, 2847–2864 (2004).

    Article  ADS  Google Scholar 

  5. Gunnarsson, O., Calandra, M. & Han, J. E. Colloquium: Saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085–1099 (2003).

    Article  ADS  Google Scholar 

  6. Limelette, P. et al. Mott transition and transport crossovers in the organic compound κ-(BEDT−TTF)2Cu[N(CN)2]Cl. Phys. Rev. Lett. 91, 016401 (2003).

    Article  ADS  Google Scholar 

  7. Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995).

    Article  ADS  Google Scholar 

  8. Hartnoll, S. A. in Black Holes in Higher Dimensions (ed. Horowitz, G.) Ch. 14 (Cambridge Univ. Press, 2012).

    Google Scholar 

  9. Witczak-Krempa, W. & Sachdev, S. The quasi-normal modes of quantum criticality. Phys. Rev. B 86, 235115 (2012).

    Article  ADS  Google Scholar 

  10. Orenstein, J. et al. Frequency- and temperature-dependent conductivity in YBa2Cu3O6+x crystals. Phys. Rev. B 42, 6342–6362 (1990).

    Article  ADS  Google Scholar 

  11. Nicoletti, D. et al. An extended infrared study of the (p,T) phase diagram of the p-doped Cu–O plane. New J. Phys. 13, 123009 (2011).

    Article  ADS  Google Scholar 

  12. Emery, V. J., Fradkin, E., Kivelson, S. A. & Lubensky, T. C. Quantum theory of the smectic metal state in stripe phases. Phys. Rev. Lett. 85, 2160–2163 (2000).

    Article  ADS  Google Scholar 

  13. Vishwanath, A. & Carpentier, D. Two-dimensional anisotropic non-Fermi-liquid phase of coupled Luttinger liquids. Phys. Rev. Lett. 86, 676–679 (2001).

    Article  ADS  Google Scholar 

  14. Hartnoll, S. A. & Hofman, D. M. Locally critical resistivities from umklapp scattering. Phys. Rev. Lett. 108, 241601 (2012).

    Article  ADS  Google Scholar 

  15. Hartnoll, S. A., Kovtun, P. K., Muller, M. & Sachdev, S. Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007).

    Article  ADS  Google Scholar 

  16. Hartnoll, S. A. & Herzog, C. P. Impure AdS/CFT correspondence. Phys. Rev. D 77, 106009 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  17. Liu, Y., Schalm, K., Sun, Y-W. & Zaanen, J. Lattice potentials and fermions in holographic non Fermi-liquids: Hybridizing local quantum criticality. J. High Energy Phys. 2012, 036 (October 2012).

    Article  Google Scholar 

  18. Horowitz, G. T., Santos, J. E. & Tong, D. Optical conductivity with holographic lattices. J. High Energy Phys. 2012, 168 (July 2012).

    Article  MathSciNet  Google Scholar 

  19. Horowitz, G. T., Santos, J. E. & Tong, D. Further evidence for lattice-induced scaling. J. High Energy Phys. 2012, 102 (November 2012).

    Article  ADS  Google Scholar 

  20. Gibbons, G. W. & Warnick, C. M. The helical phase of chiral nematic liquid crystals as the Bianchi VII(0) group manifold. Phys. Rev. E 84, 031709 (2011).

    Article  ADS  Google Scholar 

  21. Nakamura, S., Ooguri, H. & Park, C-S. Gravity dual of spatially modulated phase. Phys. Rev. D 81, 044018 (2010).

    Article  ADS  Google Scholar 

  22. Donos, A. & Gauntlett, J. P. Holographic helical superconductors. J. High Energy Phys. 2011, 091 (December 2011).

    Article  MathSciNet  Google Scholar 

  23. Donos, A. & Gauntlett, J. P. Black holes dual to helical current phases. Phys. Rev. D 86, 064010 (2012).

    ADS  Google Scholar 

  24. Iizuka, N., Kachru, S., Kundu, N., Narayan, P., Sircar, N. & Trivedi, S. P. Bianchi attractors: A classification of extremal black brane geometries. J. High Energy Phys. 2012, 193 (July 2012).

    Article  MathSciNet  Google Scholar 

  25. Hartnoll, S. A. & Huijse, L. Fractionalization of holographic Fermi surfaces. Class. Quant. Grav. 29, 194001 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  26. Hartnoll, S. A. & Radicevic, D. Holographic order parameter for charge fractionalization. Phys. Rev. D 86, 066001 (2012).

    Article  ADS  Google Scholar 

  27. D’Hoker, E. & Kraus, P. Charge expulsion from black brane horizons, and holographic quantum criticality in the plane. J. High Energy Phys. 2012, 105 (September 2012).

    Article  ADS  Google Scholar 

  28. Emery, V. J., Luther, A. & Peschel, I. Solution of the one-dimensional electron gas on a lattice. Phys. Rev. B 13, 1272–1276 (1976).

    Article  ADS  Google Scholar 

  29. Kaplan, D. B., Lee, J-W., Son, D. T. & Stephanov, M. A. Conformality Lost. Phys. Rev. D 80, 125005 (2009).

    Article  ADS  Google Scholar 

  30. Donos, A. & Hartnoll, S. A. Universal linear in temperature resistivity from black hole superradiance. Phys. Rev. D 86, 124046 (2012).

    Article  ADS  Google Scholar 

  31. Elsasser, S., Wu, D., Dressel, M. & Schlueter, J. A. Power-law dependence of the optical conductivity observed in the quantum spin-liquid compound κ-(BEDT−TTF)2Cu2(CN)3 . Phys. Rev. B 86, 155150 (2012).

    Article  ADS  Google Scholar 

  32. Pilon, D. V. et al. Spin induced optical conductivity in the spin liquid candidate herbertsmithite. Preprint at http://arxiv.org/abs/1301.3501 (2013).

  33. Iqbal, N., Liu, H. & Mezei, M. Semi-local quantum liquids. J. High Energy Phys. 2012, 086 (April 2012).

    Article  Google Scholar 

  34. Gouteraux, B. & Kiritsis, E. Generalized holographic quantum criticality at finite density. J. High Energy Phys. 2011, 036 (December 2011).

    Article  Google Scholar 

  35. Hartnoll, S. A. & Shaghoulian, E. Spectral weight in holographic scaling geometries. J. High Energy Phys. 2012, 078 (July 2012).

    Article  MathSciNet  Google Scholar 

  36. Anantua, R. J., Hartnoll, S. A., Martin, V. L. & Ramirez, D. M. The Pauli exclusion principle at strong coupling: Holographic matter and momentum space. J. High Energy Phys. 2013, 104 (March 2013).

    Article  Google Scholar 

  37. Nishioka, T., Ryu, S. & Takayanagi, T. Holographic superconductor/insulator transition at zero temperature. J. High Energy Phys. 2010, 131 (March 2010).

    Article  Google Scholar 

  38. Charmousis, C., Gouteraux, B., Kim, B. S., Kiritsis, E. & Meyer, R. Effective holographic theories for low-temperature condensed matter systems. J. High Energy Phys. 2010, 151 (November 2010).

    Article  ADS  Google Scholar 

  39. Balasubramanian, K. & McGreevy, J. The particle number in Galilean holography. J. High Energy Phys. 2011, 137 (January 2011).

    Article  MathSciNet  Google Scholar 

  40. Anderson, P. W. The Theory of Superconductivity in the High-Tc Cuprate Superconductors (PUP, 1997).

    Google Scholar 

  41. Son, D. T. & Starinets, A. O. Minkowski space correlators in AdS / CFT correspondence: Recipe and applications. J. High Energy Phys. 2002, 042 (September 2002).

    Article  MathSciNet  Google Scholar 

  42. Horowitz, G. T. & Roberts, M. M. Holographic superconductors with various condensates. Phys. Rev. D 78, 126008 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with J. Gauntlett, G. Horowitz, S. Kivelson, S. Sachdev, D. Tong and J. Zaanen. S.A.H. is partially supported by a Sloan Research Fellowship and by a DOE Early Career Award.

Author information

Authors and Affiliations

Authors

Contributions

A.D. and S.A.H. were both involved in the conception, technical computations and writing up of this work.

Corresponding author

Correspondence to Sean A. Hartnoll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donos, A., Hartnoll, S. Interaction-driven localization in holography. Nature Phys 9, 649–655 (2013). https://doi.org/10.1038/nphys2701

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2701

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing