Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Commensurability and chaos in magnetic vortex oscillations

Abstract

Magnetic vortex dynamics in thin films is characterized by gyrotropic motion, the sense of gyration depending on the vortex core polarity, which reverses when a critical velocity is reached. Although self-sustained vortex oscillations in nanoscale systems are known to be possible, the precise role of core reversal in such dynamics remains unknown. Here we report on an experimental observation of periodic core reversal during self-sustained vortex gyration in a magnetic nanocontact system. By tuning the ratio between the gyration frequency and the rate of core reversal, we show that commensurate phase-locked and incommensurate chaotic states are possible, resulting in Devil’s staircases with driving currents. These systems could have the potential to serve as tunable nanoscale radiofrequency electrical oscillators for secure communications, allowing schemes such as encryption by chaos on demand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of vortex dynamics in magnetic nanocontacts.
Figure 2: Experimental power spectrum of the nanocontact vortex oscillator.
Figure 3: Calculated power spectra from micromagnetics simulations.
Figure 4: Simulated Devil’s staircases and chaotic states.

Similar content being viewed by others

References

  1. Hubert, A. & Schäfer, R. Magnetic Domains (Springer, 1998).

    Google Scholar 

  2. Choe, S. B. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

    Article  ADS  Google Scholar 

  3. Buchanan, K. S. et al. Soliton-pair dynamics in patterned ferromagnetic ellipses. Nature Phys. 1, 172–176 (2005).

    Article  ADS  Google Scholar 

  4. Novosad, V. et al. Magnetic vortex resonance in patterned ferromagnetic dots. Phys. Rev. B 72, 024455 (2005).

    Article  ADS  Google Scholar 

  5. Yamada, K. et al. Electrical switching of the vortex core in a magnetic disk. Nature Mater. 6, 270–273 (2007).

    Article  ADS  Google Scholar 

  6. Pufall, M., Rippard, W., Schneider, M. & Russek, S. Low-field current-hysteretic oscillations in spin-transfer nanocontacts. Phys. Rev. B 75, 140404 (2007).

    Article  ADS  Google Scholar 

  7. Mistral, Q. et al. Current-driven vortex oscillations in metallic nanocontacts. Phys. Rev. Lett. 100, 257201 (2008).

    Article  ADS  Google Scholar 

  8. Ruotolo, A. et al. Phase-locking of magnetic vortices mediated by antivortices. Nature Nanotech. 4, 528–532 (2009).

    Article  ADS  Google Scholar 

  9. Pribiag, V. S. et al. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nature Phys. 3, 498–503 (2007).

    Article  ADS  Google Scholar 

  10. Dussaux, A. et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nature Commun. 1, 8 (2010).

    Article  Google Scholar 

  11. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  12. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  ADS  Google Scholar 

  13. Berger, L. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55, 1954–1956 (1984).

    Article  ADS  Google Scholar 

  14. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  ADS  Google Scholar 

  15. Petit-Watelot, S., Otxoa, R. M. & Manfrini, M. Electrical properties of magnetic nanocontact devices computed using finite-element simulations. Appl. Phys. Lett. 100, 083507 (2012).

    Article  ADS  Google Scholar 

  16. Sheka, D. D., Gaididei, Y. & Mertens, F. G. Current induced switching of vortex polarity in magnetic nanodisks. Appl. Phys. Lett. 91, 082509 (2007).

    Article  ADS  Google Scholar 

  17. Guslienko, K., Lee, K-S. & Kim, S-K. Dynamic origin of vortex core switching in soft magnetic nanodots. Phys. Rev. Lett. 100, 027203 (2008).

    Article  ADS  Google Scholar 

  18. Hertel, R. & Schneider, C. Exchange explosions: Magnetization dynamics during vortex-antivortex annihilation. Phys. Rev. Lett. 97, 177202 (2006).

    Article  ADS  Google Scholar 

  19. Gouvea, M. E., Wysin, G. M., Bishop, A. R. & Mertens, F. G. Vortices in the classical two-dimensional anisotropic Heisenberg model. Phys. Rev. B 39, 11840–11849 (1989).

    Article  ADS  Google Scholar 

  20. Vansteenkiste, A. et al. X-ray imaging of the dynamic magnetic vortex core deformation. Nature Phys. 5, 332–334 (2009).

    Article  ADS  Google Scholar 

  21. Kravchuk, V. P., Sheka, D. D., Mertens, F. G. & Gaididei, Y. Off-centred immobile magnetic vortex under influence of spin-transfer torque. J. Phys. D 44, 285001 (2011).

    Article  Google Scholar 

  22. Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

    Article  ADS  Google Scholar 

  23. Pigeau, B. et al. Optimal control of vortex-core polarity by resonant microwave pulses. Nature Phys. 7, 26–31 (2010).

    Article  ADS  Google Scholar 

  24. Kammerer, M. et al. Magnetic vortex core reversal by excitation of spin waves. Nature Commun. 2, 279–276 (2011).

    Article  Google Scholar 

  25. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  26. Bouzehouane, K. et al. Nanolithography based on real-time electrically controlled indentation with an atomic force microscope for nanocontact elaboration. Nano Lett. 3, 1599–1602 (2003).

    Article  ADS  Google Scholar 

  27. Manfrini, M. et al. Agility of vortex-based nanocontact spin torque oscillators. Appl. Phys. Lett. 95, 192507 (2009).

    Article  ADS  Google Scholar 

  28. Kim, J-V. & Devolder, T. Theory of the power spectrum of spin-torque nanocontact vortex oscillators. Preprint at http://arxiv.org/abs/1007.3859 (2010).

  29. Manfrini, M. et al. Frequency shift keying in vortex-based spin torque oscillators. J. Appl. Phys. 109, 083940 (2011).

    Article  ADS  Google Scholar 

  30. Compton, R. & Crowell, P. Dynamics of a pinned magnetic vortex. Phys. Rev. Lett. 97, 137202 (2006).

    Article  ADS  Google Scholar 

  31. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  32. Bak, P. Commensurate phases, incommensurate phases and the devil’s staircase. Rep. Prog. Phys. 45, 587 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  33. De Loubens, G. et al. Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk. Phys. Rev. Lett. 102, 177602 (2009).

    Article  ADS  Google Scholar 

  34. Cuomo, K. M. & Oppenheim, A. V. Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993).

    Article  ADS  Google Scholar 

  35. Pecora, L. M. & Carroll, T. L. Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  36. Lehndorff, R., Bürgler, D. E., Schneider, C. M. & Celinski, Z. Injection locking of the gyrotropic vortex motion in a nanopillar. Appl. Phys. Lett. 97, 142503 (2010).

    Article  ADS  Google Scholar 

  37. Dussaux, A. et al. Phase locking of vortex based spin transfer oscillators to a microwave current. Appl. Phys. Lett. 98, 132506 (2011).

    Article  ADS  Google Scholar 

  38. Devolder, T. et al. Time-resolved zero field vortex oscillations in point contacts. Appl. Phys. Lett. 95, 012507 (2009).

    Article  ADS  Google Scholar 

  39. Devolder, T. et al. Vortex nucleation in spin-torque nanocontact oscillators. Appl. Phys. Lett. 97, 072512 (2010).

    Article  ADS  Google Scholar 

  40. Vansteenkiste, A. & Van de Wiele, B. MuMax: A new high-performance micromagnetic simulation tool. J. Magn. Magn. Mater. 323, 2585–2591 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European Commission, under contract numbers MRTN-CT-2006-035327 SPINSWITCH and MRTN-CT-2008-215368-2 SEMISPINNET, the French National Research Agency (ANR), within the VOICE project no ANR-09-NANO-006, the RTRA foundation ‘Triangle de la Physique’, under contract number 2007-051T, and the Flanders Research Foundation. The authors thank R. Guillemet, S. Fusil and C. Deranlot for their assistance during the growth and fabrication of the samples, and A. Dussaux for complementary experiments and discussions.

Author information

Authors and Affiliations

Authors

Contributions

J-V.K., T.D., A.R., J.G. and V.C. designed the project, and V.C., T.D. and J-V.K. coordinated the project. K.B. fabricated the samples. T.D. designed and implemented the experimental set-up. A.R. and T.D. performed the high-frequency electrical measurements. T.D., A.R. and J-V.K. analysed the data. S.P-W., J-V.K., R.M.O. and T.D. interpreted the data and developed the model. A.V. and B.V.d.W. wrote the micromagnetics simulation code. J-V.K., S.P-W. and R.M.O. performed the simulations and interpreted the results. J-V.K. prepared the manuscript. All authors edited and commented on the manuscript.

Corresponding author

Correspondence to Joo-Von Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 828 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit-Watelot, S., Kim, JV., Ruotolo, A. et al. Commensurability and chaos in magnetic vortex oscillations. Nature Phys 8, 682–687 (2012). https://doi.org/10.1038/nphys2362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing