Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiscale photosynthetic and biomimetic excitation energy transfer

Abstract

Recent evidence suggests that quantum coherence enhances excitation energy transfer (EET) through individual photosynthetic light-harvesting protein complexes (LHCs). Its role in vivo is unclear however, where transfer to chemical reaction centres (RCs) spans larger, multi-LHC/RC networks. Here we predict maximum coherence lengths possible in fully connected chromophore networks with the generic structural and energetic features of multi-LHC/RC networks. A renormalization analysis reveals the dependence of EET dynamics on multiscale, hierarchical network structure. Surprisingly, thermal decoherence rate declines at larger length scales for physiological parameters and coherence length is instead limited by localization due to static disorder. Physiological parameters support coherence lengths up to 5 nm, which is consistent with observations of solvated LHCs and invites experimental tests for intercomplex coherences in multi-LHC/RC networks. Results further suggest that a semiconductor quantum dot network engineered with hierarchically clustered structure and small static disorder may support coherent EET over larger length scales, at ambient temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural hierarchy of the higher-plant light-harvesting machinery and renormalization flow of our analogous dimeric chromophore network hierarchy.
Figure 2: Multiscale tunnelling and decoherence rates in an ordered network (ε0(ij)=0), across the first seven hierarchy levels k (curves labelled by colour), as a function of network clustering C.
Figure 3: Scaling of dynamical crossover by thermal decoherence (XTk=Fk(2Δk(12))/(2Δk(12))) and localization by static disorder ().

Similar content being viewed by others

References

  1. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  2. Lee, H., Cheng, Y-C. & Fleming, G. R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

    Article  ADS  Google Scholar 

  3. Calhoun, T. et al. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Chem. Phys. B 113, 16291–16295 (2009).

    Article  Google Scholar 

  4. Schlau-Cohen, G. S. et al. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. J. Phys. Chem. B 113, 15352–15363 (2009).

    Article  Google Scholar 

  5. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  ADS  Google Scholar 

  6. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    Article  ADS  Google Scholar 

  7. Olaya-Castro, A., Lee, C. F., Fassioli Olsen, F. & Johnson, N. F. Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78, 085115 (2008).

    Article  ADS  Google Scholar 

  8. Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

    Article  ADS  Google Scholar 

  9. Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).

    Article  ADS  Google Scholar 

  10. Caruso, F., Chin, A. W., Datta, A., Huelga, S. F. & Plenio, M. B. Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. J. Chem. Phys. 131, 105106 (2009).

    Article  ADS  Google Scholar 

  11. Thorwart, M., Eckel, J., Reina, J. H., Nalbach, P. & Weiss, S. Enhanced quantum entanglement in the non-Markovian dynamics of biomolecular excitons. Chem. Phys. Lett. 478, 234–237 (2009).

    Article  ADS  Google Scholar 

  12. Roden, J., Strunz, W. T. & Eisfeld, A. Non-Markovian quantum state diffusion for absorption spectra of molecular aggregates. J. Chem. Phys. 134, 034902 (2011).

    Article  ADS  Google Scholar 

  13. Prior, J., Chin, A. W., Huelga, S. F. & Plenio, M. B. Efficient simulation of strong system-environment interactions. Phys. Rev. Lett. 105, 050404 (2010).

    Article  ADS  Google Scholar 

  14. Jang, S. Theory of coherent resonance energy transfer for coherent initial condition. J. Chem. Phys. 131, 164101 (2009).

    Article  ADS  Google Scholar 

  15. Strümpfer, J. & Schulten, K. Light harvesting complex II B850 excitation dynamics. J. Chem. Phys. 131, 225101 (2009).

    Article  ADS  Google Scholar 

  16. Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009).

    Article  ADS  Google Scholar 

  17. Ishizaki, A. & Fleming, G. R. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009).

    Article  ADS  Google Scholar 

  18. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009).

    Article  ADS  Google Scholar 

  19. Rebentrost, P., Chakraborty, R. & Aspuru-Guzik, A. Non-Markovian quantum jumps in excitonic energy transfer. J. Chem. Phys. 131, 184102 (2009).

    Article  ADS  Google Scholar 

  20. Chin, A. W., Datta, A., Caruso, F., Huelga, S. F. & Plenio, M. B. Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New. J. Phys. 12, 065002 (2010).

    Article  ADS  Google Scholar 

  21. Hoyer, S., Sarovar, M. & Whaley, K. B. Limits of quantum speedup in photosynthetic light harvesting. New J. Phys. 12, 065041 (2010).

    Article  ADS  Google Scholar 

  22. Sarovar, M., Ishizaki, A., Fleming, G. R. & Whaley, K. B. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Phys. 6, 462–467 (2010).

    Article  ADS  Google Scholar 

  23. Lloyd, S. & Mohseni, M. Symmetry-enhanced supertransfer of delocalized quantum states. New J. Phys. 12, 075020 (2010).

    Article  ADS  Google Scholar 

  24. Liang, X-T. Excitation energy transfer: Study with non-Markovian dynamics. Phys. Rev. E 82, 051918 (2010).

    Article  ADS  Google Scholar 

  25. Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).

    Article  Google Scholar 

  26. Scholak, T., de Melo, F., Wellens, T., Mintert, F. & Buchleitner, A. Efficient and coherent excitation transfer across disordered molecular networks. Phys. Rev. E 83, 021912 (2011).

    Article  ADS  Google Scholar 

  27. Sarovar, M., Cheng, Y-C. & Whaley, K. B. Environmental correlation effects on excitation energy transfer in photosynthetic light harvesting. Phys. Rev. E 83, 011906 (2011).

    Article  ADS  Google Scholar 

  28. Womick, J. M. & Moran, A. M. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011).

    Article  Google Scholar 

  29. Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta 1706, 12–39 (2005).

    Article  Google Scholar 

  30. Drews, G. & Golecki, J. R. Anoxygenic Photosynthetic Bacteria (Kluwer Academic, 1995).

    Google Scholar 

  31. Fassioli, F., Olaya-Castro, A., Scheuring, S., Sturgis, J. N. & Johnson, N. F. Energy transfer in light-adapted photosynthetic membranes: From active to saturated photosynthesis. Biophys. J. 97, 2464–2473 (2009).

    Article  ADS  Google Scholar 

  32. Lambrev, P. H. et al. Functional domain size in aggregates of light-harvesting complex II and thylakoid membranes. Biochim. Biophys. Acta 1807, 1022–1031 (2011).

    Article  Google Scholar 

  33. Spano, F. C., Clark, J., Silva, C. & Friend, R. H. Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films. J. Chem. Phys. 130, 074904 (2009).

    Article  ADS  Google Scholar 

  34. Hildner, R., Brinks, D. & van Hulst, N. F. Femtosecond coherence and quantum control of single molecules at room temperature. Nature Phys. 7, 172–177 (2011).

    Article  ADS  Google Scholar 

  35. Horton, P., Johnson, M. P., Perez-Bueno, M. L., Kiss, A. Z. & Ruban, A. V. Photosynthetic acclimation: Does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J. 275, 1069–1079 (2008).

    Article  Google Scholar 

  36. Broess, K., Trinkunas, G., van Hoek, A., Croce, R. & van Amerongen, H. Determination of the excitation migration time in photosystem II—Consequences for the membrane organization and charge separation parameters. Biochim. Biophys. Acta 1777, 404–409 (2006).

    Article  Google Scholar 

  37. Miloslavina, Y. et al. Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. Fed. Euro. Biochem. Soc. Lett. 582, 3625–3631 (2008).

    Article  Google Scholar 

  38. Ritz, T., Park, S. & Schulten, K. Kinetics of excitation migration and trapping in the photosynthetic unit of purple bacteria. J. Phys. Chem. 105, 8259–8267 (2001).

    Article  Google Scholar 

  39. Scholes, G. D. Designing light-harvesting antenna systems based on superradiant molecular aggregates. Chem. Phys. 275, 373–386 (2002).

    Article  Google Scholar 

  40. Jang, S. J., Newton, M. D. & Silbey, R. J. Multichromophoric Förster resonance energy transfer. Phys. Rev. Lett. 92, 218301 (2004).

    Article  ADS  Google Scholar 

  41. Lambrev, P. H. et al. Importance of trimer-trimer interactions for the native state of the plant light-harvesting complex II. Biochim. Biophys. Acta 1767, 847–853 (2007).

    Article  Google Scholar 

  42. Didraga, C., Malyshev, V. A. & Knoester, J. Excitation energy transfer between closely spaced multichromophoric systems: Effects of band mixing and intraband relaxation. J. Phys. Chem. B 110, 18818–18827 (2006).

    Article  Google Scholar 

  43. Mahan, G. Many-Particle Physics (Kluwer Academic/Plenum Publishers, 2000).

    Book  Google Scholar 

  44. Gilmore, J. B. & McKenzie, R. H. Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent. J. Phys. Condens. Matter 17, 1735–1746 (2005).

    Article  ADS  Google Scholar 

  45. Gilmore, J. B. & McKenzie, R. H. Criteria for quantum coherent transfer of excitations between chromophores in a polar solvent. Chem. Phys. Lett. 421, 266–271 (2006).

    Article  ADS  Google Scholar 

  46. Barrett, S. D. & Milburn, G. J. Measuring the decoherence rate in a semiconductor charge qubit. Phys. Rev. B 68, 155307 (2003).

    Article  ADS  Google Scholar 

  47. Stace, T. M., Doherty, A. C. & Barrett, S. D. Population inversion of a driven two-level system in a structureless bath. Phys. Rev. Lett. 95, 106801 (2005).

    Article  ADS  Google Scholar 

  48. Egger, R., Grabert, H. & Weiss, U. Crossover from coherent to incoherent dynamics in damped quantum systems. Phys. Rev. E 55, R3809–R3812 (1997).

    Article  ADS  Google Scholar 

  49. Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  50. Fisher, D. S., Frölich, J. & Spencer, T. The Ising model in a random magnetic field. J. Stat. Phys. 34, 863–870 (1984).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the following people for discussions and comments: B. Hankamer,M. Landsberg, E. Knauth, I. Ross, M. Sarovar, S. Hoyer, B. Whaley, A. Ishizaki, T. Calhoun, G. Schlau-Cohen, N. Ginsberg, J. Dawlaty, G. Fleming, P. Rebentrost,L. Vogt, A. Perdomo, M. Mohseni, A. Aspuru-Guzik, A. Olaya-Castro, S. Jang, R. Pfeifer,P. Rohde, E. Cavalcanti and R. McKenzie. A.K.R. thanks the Whaley and Fleming groups at UC Berkeley, and the Aspuru-Guzik group at Harvard, for hospitality. This work was supported by Australian Research Council grants CE110001013, FF0776191, DP1093287 and DP0986352 and a Dan David Prize doctoral scholarship.

Author information

Authors and Affiliations

Authors

Contributions

A.K.R. suggested the multiscale, hierarchical approach of the study. T.M.S. proposed the renormalization analysis. A.K.R. and T.M.S. completed the calculations. A.K.R. wrote, and T.M.S. and G.J.M. edited, the manuscript. G.J.M. supervised the project and advised on calculations.

Corresponding author

Correspondence to A. K. Ringsmuth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringsmuth, A., Milburn, G. & Stace, T. Multiscale photosynthetic and biomimetic excitation energy transfer. Nature Phys 8, 562–567 (2012). https://doi.org/10.1038/nphys2332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing