Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer

Abstract

Using resonant phenomena to exert coherent control over electron spin dynamics could enable more-energy-efficient spintronic devices and related technologies. Yet, achieving collective spin resonant control by ferromagnetic resonance excitation most often requires radiofrequency magnetic fields or the injection of spin-polarized currents that consume relatively large amounts of power. Inducing ferromagnetic resonances directly with an electric field offers a lower-power alternative to these, but doing so requires strong electric and magnetic coupling that is difficult to realize owing to screening effects, particularly in metallic materials. Here, we demonstrate electric-field-induced ferromagnetic resonance excitation by means of voltage control over the magnetic anisotropy in a few monolayers of FeCo at room temperature. The technique provides a low-power, highly localized and coherent means to manipulate electron spin dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic concept of electric-field-induced FMR in a magnetic tunnel junction with an ultrathin ferromagnetic layer.
Figure 2: Observation of the electric-field-induced FMR.
Figure 3: Elevation-angle dependence of the signal intensity.
Figure 4: Input-radiofrequency-voltage dependence of the homodyne detection signal intensity.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  ADS  Google Scholar 

  2. Griffiths, J. H. E. Anomalous high-frequency resistance of ferromagnetic metals. Nature 158, 670–671 (1946).

    Article  ADS  Google Scholar 

  3. Kittel, C. Interpretation of anomalous Larmor frequencies in ferromagnetic resonance experiment. Phys. Rev. 71, 270–271 (1947).

    Article  ADS  Google Scholar 

  4. Zhu, J-G., Zhu, X. & Tang, Y. Microwave assisted magnetic recording. IEEE Trans. Magn. 44, 125–131 (2008).

    Article  ADS  Google Scholar 

  5. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  ADS  Google Scholar 

  6. Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG Magnonics. J. Phys. D 43, 264002 (2010).

    Article  ADS  Google Scholar 

  7. Brataas, A., Tserkovnyak, Y., Bauer, G. E. W. & Halperin, B. I. Spin battery operated by ferromagnetic resonance. Phys. Rev. B 66, 060404 (2002).

    Article  ADS  Google Scholar 

  8. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article  ADS  Google Scholar 

  9. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  ADS  Google Scholar 

  10. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  11. Chumak, A. V., Neumann, T., Serga, A. A., Hillebrands, B. & Kostylev, M. P. A current-controlled, dynamic magnonic crystal. J. Phys. D 42, 205005 (2009).

    Article  ADS  Google Scholar 

  12. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  ADS  Google Scholar 

  13. Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006).

    Article  ADS  Google Scholar 

  14. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  ADS  Google Scholar 

  15. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

    Article  ADS  Google Scholar 

  16. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).

    Article  ADS  Google Scholar 

  17. Shiota, Y. et al. Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Express 2, 063001 (2009).

    Article  ADS  Google Scholar 

  18. Nozaki, T., Shiota, Y., Shiraishi, M., Shinjo, T. & Suzuki, Y. Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl. Phys. Lett. 96, 022506 (2010).

    Article  ADS  Google Scholar 

  19. Ha, S-S. et al. Voltage induced magnetic anisotropy change in ultrathin Fe80Co20/MgO junctions with Brillouin light scattering. Appl. Phys. Lett. 96, 142512 (2010).

    Article  ADS  Google Scholar 

  20. Shiota, Y. et al. Quantitative evaluation of voltage-induced magnetic anisotropy change by magnetoresistance measurement. Appl. Phys. Express 4, 043005 (2011).

    Article  ADS  Google Scholar 

  21. Bonell, F. et al. Large change in perpendicular magnetic anisotropy induced by an electric field in FePd ultrathin films. Appl. Phys. Express 98, 232510 (2011).

    ADS  Google Scholar 

  22. Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).

    Article  ADS  Google Scholar 

  23. Seki, T., Kohda, M., Nitta, J. & Takanashi, K. Coercivity change in an FePt thin layer in a Hall device by voltage application. Appl. Phys. Lett. 98, 212505 (2011).

    Article  ADS  Google Scholar 

  24. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Mater. 11, 39–43 (2012).

    Article  ADS  Google Scholar 

  25. Duan, C-G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

    Article  ADS  Google Scholar 

  26. Nakamura, K. et al. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys. Rev. Lett. 102, 187201 (2009).

    Article  ADS  Google Scholar 

  27. Zhang, H. et al. Electric-field control of surface magnetic anisotropy: A density functional approach. New. J. Phys. 11, 043007 (2009).

    Article  ADS  Google Scholar 

  28. Tsujikawa, M. & Oda, T. Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): A first-principles study. Phys. Rev. Lett. 102, 247203 (2009).

    Article  ADS  Google Scholar 

  29. Yuasa, S., Fukushima, A., Nagahama, T., Ando, K. & Suzuki, Y. High tunnel magnetoresistance at room temperature in fully epitaxial Fe/MgO/Fe tunnel junctions due to coherent spin-polarized tunneling. Jpn. J. Appl. Phys. 43, L588–L590 (2004).

    Article  ADS  Google Scholar 

  30. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  ADS  Google Scholar 

  31. Parkin, S. S. P. et al. Giant tunneling magnetoresistance at room temperature with MgO(100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  ADS  Google Scholar 

  32. Allenspach, R., Stampanoni, M. & Bischof, A. Magnetic domains in thin epitaxial Co/Au(111) films. Phys. Rev. Lett. 65, 3344–3347 (1990).

    Article  ADS  Google Scholar 

  33. Skrotskii, G. V. & Kurbatov, L. V. Ferromagnetic Resonance (Pergamon, 1966).

    Google Scholar 

  34. Schreiber, F., Pflaum, J., Frait, Z., Mühge, Th. & Pelzl, J. Gilbert damping and g-factor in FexCo1−x alloy films. Solid State Commun. 93, 965–968 (1995).

    Article  ADS  Google Scholar 

  35. Kubota, H. et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nature Phys. 4, 37–41 (2007).

    Article  ADS  Google Scholar 

  36. Sankey, J. C. et al. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nature Phys. 4, 67–71 (2007).

    Article  ADS  Google Scholar 

  37. Ishibashi, S. et al. Large diode sensitivity of CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Express 3, 073001 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas ‘Materials Design through Computics: Complex Correlation and Non-Equilibrium Dynamics’. We would like to acknowledge fruitful discussions with B. Hillebrands, A. V. Chumak, M. Shiraishi, E. Tamura, T. Oda, M. Tsujikawa, K. Nakamura and M. Shirai.

Author information

Authors and Affiliations

Authors

Contributions

T.N. and Y. Suzuki designed the experiments. T.N. performed the sample fabrication, measurements and data analysis. Y. Shiota, S. Murakami and F.B. optimized the sample fabrication process of the single-crystal magnetic tunnel junctions with an ultrathin ferromagnetic layer. Y. Suzuki developed the theoretical model for the analysis. For the comparative discussion of spin-torque-induced FMR in the Supplementary Information, S.I., H.K., K.Y., T. Saruya, A.F. and S. Yuasa optimized the sputtering deposition, micro-fabrication processes and prepared the sample and S. Miwa carried out the measurement. T.N. wrote the manuscript with review and input from Y. Suzuki and T. Shinjo. All authors contributed to the planning, discussion and analysis of this research.

Corresponding author

Correspondence to Takayuki Nozaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 541 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozaki, T., Shiota, Y., Miwa, S. et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nature Phys 8, 491–496 (2012). https://doi.org/10.1038/nphys2298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing