Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The energy–speed–accuracy trade-off in sensory adaptation

Abstract

Adaptation is the essential process by which an organism becomes better suited to its environment. The benefits of adaptation are well documented, but the cost it incurs remains poorly understood. Here, by analysing a stochastic model of a minimum feedback network underlying many sensory adaptation systems, we show that adaptive processes are necessarily dissipative, and continuous energy consumption is required to stabilize the adapted state. Our study reveals a general relation among energy dissipation rate, adaptation speed and the maximum adaptation accuracy. This energy–speed–accuracy relation is tested in the Escherichia coli chemosensory system, which exhibits near-perfect chemoreceptor adaptation. We identify key requirements for the underlying biochemical network to achieve accurate adaptation with a given energy budget. Moreover, direct measurements confirm the prediction that adaptation slows down as cells gradually de-energize in a nutrient-poor medium without compromising adaptation accuracy. Our work provides a general framework to study cost-performance trade-offs for cellular regulatory functions and information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic model of adaptive feedback systems.
Figure 2: Energetics and kinetics of adaptation.
Figure 3: The E. coli chemotaxis adaptation.
Figure 4: The cost–performance relationship.
Figure 5: Adaptation dynamics of starving E. coli cells.

Similar content being viewed by others

References

  1. Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211, 1792–1804 (2008).

    Article  Google Scholar 

  2. Hazelbauer, G. L., Falke, J. J. & Parkinson, J. S. Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem. Sci. 33, 9–19 (2008).

    Article  Google Scholar 

  3. Hohmann, S. Osmotic stress signaling and osmoadaptation in yeasts. Am. Soc. Microbiol. 66, 300–372 (2002).

    Google Scholar 

  4. Menini, A. Calcium signalling and regulation in olfactory neurons. Curr. Opinion Neurobiol. 9, 419–426 (1999).

    Article  Google Scholar 

  5. Nakatani, K., Tamura, T. & Yau, K. W. Light adaptation in retinal rods of the rabbit and two other nonprimate mammals. J. Gen. Physiol. 97, 413–435 (1991).

    Article  Google Scholar 

  6. Ma, W. et al. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).

    Article  Google Scholar 

  7. Sartori, P. & Tu, Y. Noise filtering strategies in adaptive biochemical signaling networks: Application to E. Coli chemotaxis. J. Stat. Phys. 142, 1206–1217 (2011).

    Article  ADS  Google Scholar 

  8. Kampen Van, N. G. Stochastic Processes in Physics and Chemistry (North-Holland, 1981).

    MATH  Google Scholar 

  9. Tu, Y., Shimizu, T. S. & Berg, H. C. Modeling the chemotactic response ofE. Coli to time-varying stimuli. Proc. Natl Acad. Sci. USA 105, 14855–14860 (2008).

    Article  ADS  Google Scholar 

  10. Lebowitz, J. L. & Spohn, H. A Gallavotti–Cohen-type symmetry in the large deviation funcional for stochastic dynmaics. J. Stat. Phys. 95, 333–365 (1999).

    Article  ADS  Google Scholar 

  11. Parmeggiani, A., Julicher, F., Ajdari, A. & Prost, J. Energy transduction of isothermal ratchets: Generic aspects and specific examples close to and far from equilibrium. Phys. Rev. E 60, 2127–2140 (1999).

    Article  ADS  Google Scholar 

  12. Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005).

    Article  ADS  Google Scholar 

  13. Tome, T. Entropy production in nonequilibrium systems described by a Fokker–Planck equation. Brazilian J. Phys. 36, 1285–1289 (2006).

    Article  ADS  Google Scholar 

  14. Qian, H. Phosphorylation energy hypothesis: Open chemical systems and their biological functions. Annu. Rev. Phys. Chem. 58, 113–142 (2007).

    Article  ADS  Google Scholar 

  15. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  ADS  Google Scholar 

  16. Morton-Firth, C. J. & Bray, D. Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128 (1998).

    Article  Google Scholar 

  17. Yi, T. M. et al. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl Acad. Sci. USA 97, 4649–4653 (2000).

    Article  ADS  Google Scholar 

  18. Mello, B. A. & Tu, Y. Perfect and near perfect adaptation in a model of bacterial chemotaxis. Biophys. J. 84, 2943–2956 (2003).

    Article  ADS  Google Scholar 

  19. Endres, R. G. & Wingreen, N. S. Precise adaptation in bacterial chemotaxis through assistance neighborhoods. Proc. Natl Acad. Sci. USA 103, 13040–13044 (2006).

    Article  ADS  Google Scholar 

  20. Shimizu, T. S., Tu, Y. & Berg, H. C. A modular gradient-sensing network for chemotaxis in Escherichia Coli revealed by responses to time-varying stimuli. Mol. Syst. Biol. 6, 382 (2010).

    Article  Google Scholar 

  21. Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972).

    Article  ADS  Google Scholar 

  22. Ota, I. M. & Varshavsky, A. A yeast protein similar to bacterial two-component regulators. Science 262, 566–569 (1993).

    Article  ADS  Google Scholar 

  23. Posas, F. et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 two-component’ osmosensor. Cell 86, 865–875 (1996).

    Article  Google Scholar 

  24. Zufall, F., Shepherd, G. M. & Firestein, S. Inhibition of the olfactory cyclic nucleotide gated ion channel by intracellular calcium. Proc. Biol. Sci. 246, 225–230 (1991).

    Article  Google Scholar 

  25. Matthews, H. R. & Reisert, J. Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr. Opin. Neurobiol. 13, 469–475 (2003).

    Article  Google Scholar 

  26. Walsh, C. Posttranslational Modification of Proteins: Expanding Nature’s Inventory (Roberts & Company Publishers, 2006).

    Google Scholar 

  27. Alon, U. et al. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999).

    Article  ADS  Google Scholar 

  28. Detwiler, P. B. et al. Engineering aspects of enzymatic signal transdcusion: Photoreceptors in the retina. Biophys. J. 79, 2801–2817 (2000).

    Article  ADS  Google Scholar 

  29. Sourjik, V. & Berg, H. C. Receptor sensitivity in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 99, 123–127 (2002).

    Article  ADS  Google Scholar 

  30. Lan, G. et al. Adapt locally and act globally: Strategy to maintain high chemoreceptor sensitivity in complex environments. Mol. Syst. Biol. 7, 475 (2011).

    Article  ADS  Google Scholar 

  31. Landauer, R. Dissipation and noise immunity in computation and communication. Nature 335, 779–784 (1988).

    Article  ADS  Google Scholar 

  32. Li, M. & Hazelbauer, G. L. Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol. 186, 3687–3694 (2004).

    Article  Google Scholar 

  33. Berg, H. C. The rotary motor of bacterial flagella. Ann. Rev. Biochem. 72, 19–54 (2003).

    Article  Google Scholar 

  34. Voet, D., Voet, J. G. & Pratt, C. W. Fundamentals of Biochemistry (Wiley, 1999).

    Google Scholar 

  35. Hopfield, J. J. Kinetics proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974).

    Article  ADS  Google Scholar 

  36. Savageau, M. A. & Freter, R. R. Energy cost of proofreading to increase fidelity of transfer ribonucleic acid aminoacylation. Biochemistry 18, 3486–3493 (1979).

    Article  Google Scholar 

  37. Bennett, C. H. Dissipation-error tradeoff in proofreading. Biosystems 11, 85–91 (1979).

    Article  Google Scholar 

  38. Qian, H. Reducing intrinsic biochemical noise in cells and its thermodynamic limit. J. Mol. Biol. 362, 387–392 (2006).

    Article  Google Scholar 

  39. Schmidel, T. & Seifert, U. Efficiency of molecular motors at maximum power. Europhys. Lett. 83, 30005 (2008).

    Article  ADS  Google Scholar 

  40. Koshland, D. E., Goldbeter, A. & Stock, J. B. Amplification and adaptation in regulatory and sensory systems. Science 217, 220–225 (1982).

    Article  ADS  Google Scholar 

  41. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC Press, 2007).

    MATH  Google Scholar 

  42. Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13883–13778 (2005).

    Article  Google Scholar 

  43. Neumann, S. et al. Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO J. 29, 3484–3495 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Tersoff, T. Theis and K. Schwarz for comments. This work is partially supported by a National Institutes of Health (NIH) grant (R01GM081747 to Y.T.), a Deutsche Forschungsgemeinschaft (DFG) grant (SO 421/3-3 to V.S.), and a Cajamadrid fellowship to P.S.

Author information

Authors and Affiliations

Authors

Contributions

Y.T. initiated the work; G.L., P.S. and Y.T. carried out the theoretical calculations; S.N. and V.S. performed the experiments; G.L. did the data analysis; all authors wrote the paper.

Corresponding author

Correspondence to Yuhai Tu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 478 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, G., Sartori, P., Neumann, S. et al. The energy–speed–accuracy trade-off in sensory adaptation. Nature Phys 8, 422–428 (2012). https://doi.org/10.1038/nphys2276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing