Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Femtosecond torsional relaxation

Abstract

Molecular conformational reorganization following photon absorption is a fundamental process driving reactions such as the cis–trans isomerization at the heart of the primary step of vision and can be exploited for switching in artificial systems using photochromics. In general, conformational change occurs on a timescale defined by the energy of the main vibrational mode and the rate of energy dissipation. Typically, for a conformational change such as a twist around the backbone of a conjugated molecule, this occurs on the tens of picoseconds timescale. However, here we demonstrate experimentally that in certain circumstances the molecule, in this case an oligofluorene, can change conformation over two orders of magnitude faster (that is sub-100 fs) in a manner analogous to inertial solvent reorganization demonstrated in the 1990s. Theoretical simulations demonstrate that non-adiabatic transitions during internal conversion can efficiently convert electronic potential energy into torsional kinetic energy, providing the ‘kick’ that prompts sub-100 fs torsional reorganization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excited states of oligofluorenes in solution.
Figure 2: Time-resolved torsional relaxation.
Figure 3: Experimental observation of ultrafast planarization.
Figure 4: Nature of Snand reorganization dynamics from Sm.
Figure 5: Photoinduced dynamics simulations for S0, S1, Sn and Sm states, averaged over 500 trajectories to obtain statistical averages.

Similar content being viewed by others

References

  1. Clark, J. & Lanzani, G. Organic photonics for communications. Nature Photon. 4, 438–446 (2010.).

    Article  ADS  Google Scholar 

  2. Yap, B. K., Xia, R. D., Campoy-Quiles, M., Stavrinou, P. N. & Bradley, D. D. C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Mater. 7, 376–380 (2008).

    Article  ADS  Google Scholar 

  3. Virgili, T., Marinotto, D., Manzoni, C., Cerullo, G. & Lanzani, G. Ultrafast intrachain photoexcitation of polymeric semiconductors. Phys. Rev. Lett. 94, 117402 (2005).

    Article  ADS  Google Scholar 

  4. Vishnubhatla, K. C., Clark, J., Lanzani, G., Ramponi, R., Osellame, R. & Virgili, T. Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels. Appl. Phys. Lett. 94, 041123 (2009).

    Article  ADS  Google Scholar 

  5. Virgili, T. et al. Ultrafast optical gain switch in organic photonic devices. J. Mater. Chem. 20, 519–523 (2010).

    Article  Google Scholar 

  6. Kabra, D., Lu, L. P., Song, M. H., Snaith, H. J. & Friend, R. H. Efficient single-layer polymer light-emitting diodes. Adv. Mater. 22, 3194–3198 (2010).

    Article  Google Scholar 

  7. Barlow, I. A., Kreouzis, T. & Lidzey, D. G. High-speed electroluminescence modulation of a conjugated-polymer light emitting diode. Appl. Phys. Lett. 94, 243301 (2009).

    Article  ADS  Google Scholar 

  8. McNeill, C. R. & Greenham, N. C. Conjugated-polymer blends for optoelectronics. Adv. Mater. 21, 3840–3850 (2009).

    Article  Google Scholar 

  9. Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).

    Article  Google Scholar 

  10. Sakanoue, T. & Sirringhaus, H. Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nature Mater. 9, 736–740 (2010).

    Article  ADS  Google Scholar 

  11. Spano, F. C. & Silvestri, L. Multiple mode exciton-vibrational coupling in h-aggregates: synergistic enhancement of the quantum yield. J. Chem. Phys. 132, 094704 (2010).

    Article  ADS  Google Scholar 

  12. Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B. & Mathies, R. A. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310, 1006–1009 (2005).

    Article  ADS  Google Scholar 

  13. Tamai, N. & Miyasaka, H. Ultrafast dynamics of photochromic systems. Chem. Rev. 100, 1875–1890 (2000).

    Article  Google Scholar 

  14. Franck, J. Elementary processes of photochemical reactions. Trans. Faraday Soc. 21, 536–542 (1926).

    Article  Google Scholar 

  15. Condon, E. A theory of intensity distribution in band systems. Phys. Rev. 28, 1182–1201 (1926).

    Article  ADS  Google Scholar 

  16. Lanzani, G., Nisoli, M., DeSilvestri, S. & Tubino, R. Femtosecond vibrational and torsional energy redistribution in photoexcited oligothiophenes. Chem. Phys. Lett. 251, 339–345 (1996).

    Article  ADS  Google Scholar 

  17. Hintschich, S. I., Dias, F. B. & Monkman, A. P. Dynamics of conformational relaxation in photoexcited oligofluorenes and polyfluorene. Phys. Rev. B 74, 045210 (2006).

    Article  ADS  Google Scholar 

  18. Justino, L. L. G. et al. Conformational studies of poly(9,9-dialkylfluorene)s in solution using NMR spectroscopy and density functional theory calculations. J. Phys. Chem. B 113, 11808–11821 (2009).

    Article  Google Scholar 

  19. Chen, H. L. Excited-state backbone twisting of polyfluorene as detected from photothermal after-effects. J. Phys. Chem. B 113, 8527–8531 (2009).

    Article  Google Scholar 

  20. Parkinson, P., Muller, C., Stingelin, N., Johnston, M. B. & Herz, L. M. Role of ultrafast torsional relaxation in the emission from polythiophene aggregates. J. Phys. Chem. Lett. 1, 2788–2792 (2010).

    Article  Google Scholar 

  21. Prokhorenko, V. I. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006).

    Article  ADS  Google Scholar 

  22. Tretiak, S., Saxena, A., Martin, R. L. & Bishop, A. R. Conformational dynamics of photoexcited conjugated molecules. Phys. Rev. Lett. 89, 097407 (2002).

    Article  ADS  Google Scholar 

  23. Wu, C., Malinin, S. V., Tretiak, S. & Chernyak, V. Y. Exciton scattering and localization in branched dendrimeric structures. Nature Phys. 2, 631–635 (2006).

    Article  ADS  Google Scholar 

  24. Karabunarliev, S., Bittner, E. R. & Baumgarten, M. Franck–Condon spectra and electron-libration coupling in para-polyphenyls. J. Chem. Phys. 114, 5863–5870 (2001).

    Article  ADS  Google Scholar 

  25. Karabunarliev, S., Baumgarten, M., Bittner, E. R. & Mullen, K. Rigorous Franck-Condon absorption and emission spectra of conjugated oligomers from quantum chemistry. J. Chem. Phys. 113, 11372–11381 (2000).

    Article  ADS  Google Scholar 

  26. Clark, J. et al. Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers. J. Nanophoton. 2, 023504 (2008.).

    Article  Google Scholar 

  27. Hayes, S. C. & Silva, C. Analysis of the excited-state absorption spectral bandshape of oligofluorenes. J. Chem. Phys. 132, 214510 (2010).

    Article  ADS  Google Scholar 

  28. Franco, I. & Tretiak, S. Electron-vibrational dynamics of photoexcited polyfluorenes. J. Am. Chem. Soc. 126, 12130–12140 (2004).

    Article  Google Scholar 

  29. Westenhoff, S. et al. Anomalous energy transfer dynamics due to torsional relaxation in a conjugated polymer. Phys. Rev. Lett. 97, 166804 (2006).

    Article  ADS  Google Scholar 

  30. Fratiloiu, S. et al. Electronic structure and optical properties of charged oligofluorenes studied by VIS/NIR spectroscopy and time-dependent density functional theory. J. Phys. Chem. B 110, 5984–5993 (2006).

    Article  Google Scholar 

  31. Virgili, T., Marinotto, D., Lanzani, G. & Bradley, D. D. C. Ultrafast resonant optical switching in isolated polyfluorenes chains. Appl. Phys. Lett. 86, 091113 (2005).

    Article  ADS  Google Scholar 

  32. Tong, M., Sheng, C. X. & Vardeny, Z. V. Nonlinear optical spectroscopy of excited states in polyfluorene. Phys. Rev. B 75, 125207 (2007).

    Article  ADS  Google Scholar 

  33. Zhang, X. P., Xia, Y. J. & Friend, R. H. Multiphoton excited photoconductivity in polyfluorene. Phys. Rev. B 75, 245128 (2007).

    Article  ADS  Google Scholar 

  34. Kohler, A. et al. Charge separation in localized and delocalized electronic states in polymeric semiconductors. Nature 392, 903–906 (1998).

    Article  ADS  Google Scholar 

  35. Nelson, T., Fernandez-Alberti, S., Chernyak, V., Roitberg, A. E. & Tretiak, S. Nonadiabatic excited-state molecular dynamics modeling of photoinduced dynamics in conjugated molecules. J. Phys. Chem. B 115, 5402–5414 (2011).

    Article  Google Scholar 

  36. Fernandez-Alberti, S., Kleiman, V. D., Tretiak, S. & Roitberg, A. E. Unidirectional energy transfer in conjugated molecules: The crucial role of high-frequency C≡C bonds. J. Phys. Chem. Lett. 1, 2699–2704 (2010).

    Article  Google Scholar 

  37. Tully, J. C. & Preston, R. K. Trajectory surface hopping approach to nonadiabatic molecular collisions—reaction of H+ with D2 . J. Chem. Phys. 55, 562–572 (1971).

    Article  ADS  Google Scholar 

  38. Tully, J. C. Molecular-dynamics with electronic-transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  ADS  Google Scholar 

  39. Rosenthal, S. J., Xie, X. & Fleming, G. R. Femtosecond solvation dynamics in acetonitrile: Observation of the inertial contribution to the solvent response. J. Chem. Phys. 95, 4715–4718 (1991).

    Article  ADS  Google Scholar 

  40. Stratt, M. R. & Cho, M. The short-time dynamics of solvation. J. Chem. Phys. 9, 6700–6708 (1994).

    Article  ADS  Google Scholar 

  41. Jimenez, R., Fleming, G. R., Kumar, P. V. & Maroncelli, M. Femtosecond solvation dynamics of water. Nature 369, 471–473 (1994).

    Article  ADS  Google Scholar 

  42. Elich, K., Kitazawa, M., Okada, T. & Wortmann, R. Effect of s-1 torsional dynamics on the time-resolved fluorescence spectra of 9,9’-bianthryl in solution. J. Phys. Chem. A 101, 2010–2015 (1997).

    Article  Google Scholar 

  43. Jurczok, M., Plaza, P., Martin, M. M., Meyer, Y. H. & Rettig, W. Excited state relaxation paths in 9,9’-bianthryl and 9-carbazolyl-anthracene: A sub-ps transient absorption study. Chem. Phys. 253, 339–349 (2000).

    Article  Google Scholar 

  44. Miller, R. J. D. ‘Making the molecular movie’: First frames. Acta Crystallogr. A 66, 137–156 (2010).

    Article  ADS  Google Scholar 

  45. Shoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. The 1st step in vision—femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991).

    Article  ADS  Google Scholar 

  46. Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–U88 (2010).

    Article  ADS  Google Scholar 

  47. Brida, D. et al. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers. J. Opt. 12, 013001 (2010).

    Article  ADS  Google Scholar 

  48. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford Univ. Press, 1990).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank S. Fernandez-Alberti for stimulating discussions and for help with the code for the non-adiabatic simulations. J.C. acknowledges the Royal Society for a Dorothy Hodgkin Fellowship. We also acknowledge support of the Center for Integrated Nanotechnology (CINT), the Center for Nonlinear Studies (CNLS) and the LDRD programme at Los Alamos National Laboratory, operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396, as well as the European Union for financial support through FP6-026365.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and G.L. devised the experiments, J.C. and G.C. carried out the experiments and J.C. and G.L. analysed the data. S.T. and T.N. carried out the calculations that were devised by S.T. J.C., G.L., S.T. and T.N. wrote the paper.

Corresponding author

Correspondence to J. Clark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 884 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, J., Nelson, T., Tretiak, S. et al. Femtosecond torsional relaxation. Nature Phys 8, 225–231 (2012). https://doi.org/10.1038/nphys2210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing