Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Doppler velocimetry of spin propagation in a two-dimensional electron gas

Abstract

Controlling the flow of electrons by manipulating their spin is a key to the development of spin-based electronics. Recent demonstrations of electrical-gate control in spin-transistor configurations have shown great promise, but operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high-mobility semiconductors used for devices. Here we report the application of Doppler velocimetry to resolve the motion of spin-polarized electrons in GaAs quantum wells driven by a drifting Fermi sea. We find that the spin mobility tracks the high electron mobility precisely as a function of temperature. However, we also observe that the coherent precession of spins driven by spin–orbit interaction, which is essential for the operation of a broad class of spin logic devices, breaks down at temperatures above 150 K, for reasons that are not yet understood theoretically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of photo-induced transient gratings in a doped quantum well.
Figure 2: Doppler velocimetry.
Figure 3: Spin diffusion and spin-Coulomb drag.
Figure 4: Spin drift in different temperature regimes.
Figure 5: Spin mobility.

Similar content being viewed by others

References

  1. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamental and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  2. Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H. (eds) Spintronics Vol. 82 (Semiconductors and Semimetals) (Elsevier, 2008).

  3. Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    Article  ADS  Google Scholar 

  4. Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    Article  ADS  Google Scholar 

  5. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  ADS  Google Scholar 

  6. Eichler, H. J., Gunter, P. & Pohl, D. W. Laser-Induced Dynamic Gratings (Springer, 1986).

    Book  Google Scholar 

  7. Cameron, A. R., Riblet, P. & Miller, A. Spin gratings and the measurement of electron drift mobility in multiple quantum well semiconductors. Phys. Rev. Lett. 76, 4793–4796 (1996).

    Article  ADS  Google Scholar 

  8. Goodno, G. D., Dadusc, G. & Miller, R. J. D. Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics. J. Opt. Soc. Am. B 15, 1791–1794 (1998).

    Article  ADS  Google Scholar 

  9. Maznev, A. A., Nelson, K. A. & Rogers, J. A. Optical heterodyne detection of laser-induced gratings. Opt. Lett. 23, 1319–1321 (1998).

    Article  ADS  Google Scholar 

  10. Gedik, N. & Orenstein, J. Absolute phase measurement in heterodyne detection of transient gratings. Opt. Lett. 29, 2109–2111 (2004).

    Article  ADS  Google Scholar 

  11. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  ADS  Google Scholar 

  12. Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90, 146801 (2003).

    Article  ADS  Google Scholar 

  13. Burkov, A. A., Nunez, A. S. & MacDonald, A. H. Theory of spin-charge-coupled transport in a two-dimensional electron gas with Rashba spin–orbit interactions. Phys. Rev. B 70, 155308 (2004).

    Article  ADS  Google Scholar 

  14. Bernevig, B. A., Orenstein, J. & Zhang, S-C. Exact SU(2) Symmetry and persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006).

    Article  ADS  Google Scholar 

  15. Stanescu, T. D. & Galitski, V. Spin relaxation in a generic two-dimensional spin orbit coupled system. Phys. Rev. B 75, 125307 (2007).

    Article  ADS  Google Scholar 

  16. Weber, C. P. et al. Nondiffusive spin dynamics in a two-dimensional electron gas. Phys. Rev. Lett. 98, 076604 (2007).

    Article  ADS  Google Scholar 

  17. Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009).

    Article  ADS  Google Scholar 

  18. D’Amico, I. & Vignale, G. Theory of spin Coulomb drag in spin-polarized transport. Phys. Rev. B 62, 4853–4857 (2000).

    Article  ADS  Google Scholar 

  19. Weber, C. P. et al. Observation of spin-Coulomb drag in a two-dimensional electron gas. Nature 437, 1330–1333 (2005).

    Article  ADS  Google Scholar 

  20. Flensberg, K., Jensen, T. S. & Mortensen, N. A. Diffusion equation and spin drag in spin-polarized transport. Phys. Rev. B 64, 245308 (2001).

    Article  ADS  Google Scholar 

  21. D’Amico, I. & Vignale, G. Spin Coulomb drag in the two-dimensional electron liquid. Phys. Rev. B 68, 45307 (2003).

    Article  ADS  Google Scholar 

  22. Kleinert, P. & Bryksin, V. V. Spin polarization in biased Rashba–Dresselhaus two-dimensional electron systems. Phys. Rev. B 76, 205326 (2007).

    Article  ADS  Google Scholar 

  23. Yang, L., Orenstein, J. & Lee, D-H. Random walk approach to spin dynamics in a two-dimensional electron gas with spin–orbit coupling. Phys. Rev. B 82, 155324 (2010).

    Article  ADS  Google Scholar 

  24. Crooker, S. A. & Smith, D. L. Imaging spin flows in semiconductors subjected to electric, magnetic, and strain fields. Phys. Rev. Lett. 94, 236601 (2005).

    Article  ADS  Google Scholar 

  25. Leyland, W. J. H. et al. Enhanced spin-relaxation time due to electron–electron scattering in semiconductor quantum wells. Phys. Rev. B 75, 165309 (2007).

    Article  ADS  Google Scholar 

  26. Lüffe, M. C., Kailasvuori, J. & Nunner, T. S. Relaxation mechanisms of the persistent spin helix. Phys. Rev. B 84, 075326 (2011).

    Article  ADS  Google Scholar 

  27. Höpfel, R. A. et al. Electron–hole scattering in GaAs quantum wells. Phys. Rev. B 37, 6941–6954 (1988).

    Article  ADS  Google Scholar 

  28. Yang, L. et al. Measurement of electron-hole friction in an n-doped GaAs/AlGaAs quantum well using optical transient grating spectroscopy. Phys. Rev. Lett. 106, 247401 (2011).

    Article  ADS  Google Scholar 

  29. Flatte, M. E. & Byers, J. M. Spin diffusion in semiconductors. Phys. Rev. Lett. 84, 4220–4223 (2000).

    Article  ADS  Google Scholar 

  30. D’Amico, I. & Vignale, G. Spin diffusion in doped semiconductors: The role of Coulomb interactions. Europhys. Lett. 55, 566–572 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All the optical and some of the electrical measurements were carried out at Lawrence Berkeley National Laboratory and were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Sample growth and processing and some of the transport measurements were performed at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility at Sandia National Laboratories (Contract No. DE-AC04-94AL85000).

Author information

Authors and Affiliations

Authors

Contributions

L.Y., J.D.K., J.O. and M.P.L. devised the experiment and wrote the manuscript. L.Y. and J.D.K. performed optical measurements and M.P.L. and L.Y. carried out transport measurements. L.Y. and J.O. performed analysis and theoretical modelling of the data. J.L.R. and D.R.T. carried out growth and fabrication of the quantum-well device.

Corresponding author

Correspondence to J. Orenstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 605 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Koralek, J., Orenstein, J. et al. Doppler velocimetry of spin propagation in a two-dimensional electron gas. Nature Phys 8, 153–157 (2012). https://doi.org/10.1038/nphys2157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing