Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

Abstract

Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and optically active semiconductor nanomembrane. The cooling is a result of electron–hole generation by cavity photons. Consequently, the cooling factor depends on the optical wavelength, varies drastically in the vicinity of the semiconductor bandgap, and follows the excitonic absorption behaviour. The resultant photo-induced rigidity is large and a mode temperature cooled from room temperature down to 4 K is realized with 50 μW of light and a cavity finesse of just 10. Thermal stress due to non-radiative relaxation of the electron–hole pairs is the primary cause of the cooling. We also analyse an alternative cooling mechanism that is a result of electronic stress via the deformation potential, and outline future directions for cavity optomechanics with optically active semiconductors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and structure of the fabricated GaAs membrane.
Figure 2: Cooling results.
Figure 3: Dependence of the cooling factor on the photon energy (wavelength) of the cavity field.
Figure 4: Cavity detuning dependences.

Similar content being viewed by others

References

  1. Hohberger Metzger, C. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    Article  ADS  Google Scholar 

  2. Metzger, C., Favero, I., Ortlieb, A. & Karrai, K. Optical self-cooling of a deformable Fabry–Perot cavity in the classical limit. Phys. Rev. B 78, 035309 (2008).

    Article  ADS  Google Scholar 

  3. Gigan, S. et al. Self-cooling of a micromirror by radiation-pressure. Nature 444, 67–70 (2006).

    Article  ADS  Google Scholar 

  4. Arcizet, O., Cohadon, P. F., Briant, T., Pinard, M. & Heidmann, A. Radiation pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  ADS  Google Scholar 

  5. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  ADS  Google Scholar 

  6. Corbitt, T. et al. An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007).

    Article  ADS  Google Scholar 

  7. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  8. Wilson, D. J., Regal, C. A., Papp, S. B. & Kimble, H. J. Cavity optomechanics with stoichiometric SiN films. Phys. Rev. Lett. 103, 207204 (2009).

    Article  ADS  Google Scholar 

  9. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  10. Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nature Photon. 3, 201–205 (2009).

    ADS  Google Scholar 

  11. Marquardt, F. & Girvin, S. M. Trend: Optomechanics. Physics 2, 40 (2009).

    Article  Google Scholar 

  12. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  Google Scholar 

  13. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  14. Ding, L. et al. High frequency GaAs nano-optomechanical disk resonator. Phys. Rev. Lett. 105, 263903 (2010).

    Article  ADS  Google Scholar 

  15. Ding, L. et al. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. 98, 113108 (2011).

    Article  ADS  Google Scholar 

  16. Okamoto, H. et al. Vibration amplification, damping, and self-oscillations in micromechanical resonators induced by optomechanical coupling through carrier excitation. Phys. Rev. Lett. 106, 036801 (2011).

    Article  ADS  Google Scholar 

  17. Okamoto, H. et al. Carrier-mediated optomechanical coupling in GaAs cantilevers. Phys. Rev. B 84, 014305 (2011).

    Article  ADS  Google Scholar 

  18. Wilson-Rae, I., Zoller, P. & Imamog¯lu, A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004).

    Article  ADS  Google Scholar 

  19. Sheik-Bahae, M. & Epstein, R. I. Optical refrigeration. Nature Photon. 1, 693–699 (2007).

    Article  ADS  Google Scholar 

  20. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  21. Lund-Hansen, T. et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).

    Article  ADS  Google Scholar 

  22. Liu, J. et al. High-Q optomechanical GaAs nanomembranes. Appl. Phys. Lett. 99, 243102 (2011).

    Article  ADS  Google Scholar 

  23. Tittonen, I. et al. Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits. Phys. Rev. A 59, 1038–1044 (1999).

    Article  ADS  Google Scholar 

  24. Gillespie, A. & Raab, F. Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors. Phys. Rev. D 52, 577–585 (1995).

    Article  ADS  Google Scholar 

  25. Fox, A. M. Optical Properties of Solids (Oxford Univ. Press, 2001).

    Google Scholar 

  26. Karrai, K., Favero, I. & Metzger, C. Doppler optomechanics of a photonic crystal. Phys. Rev. Lett. 100, 240801 (2008).

    Article  ADS  Google Scholar 

  27. Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonon by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article  ADS  Google Scholar 

  28. Matsuda, O., Tachizaki, T., Fukui, T., Baumberg, J. J. & Wright, O. B. Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses. Phys. Rev. B 71, 115330 (2005).

    Article  ADS  Google Scholar 

  29. Sparks, P. W. & Swenson, C. A. Thermal expansions from 2 to 40° K of Ge, Si, and four III–V compounds. Phys. Rev. 163, 779–790 (1967).

    Article  ADS  Google Scholar 

  30. Okamoto, H., Ito, D., Onomitsu, K. & Yamaguchi, H. Thermoelastic damping in GaAs micromechanical resonators. Phys. Status Solidi C 5, 2920–2922 (2008).

    Article  ADS  Google Scholar 

  31. Lifshitz, R. & Roukes, M. L. Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000).

    Article  ADS  Google Scholar 

  32. Restrepo, J., Gabelli, J., Ciuti, C. & Favero, I. Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. C. R. Phys. 12, 860–870 (2011).

    Article  ADS  Google Scholar 

  33. De Liberato, S., Lambert, N. & Nori, F. Quantum noise in photothermal cooling. Phys. Rev. A 83, 033809 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Appel, A. Grodecka-Grad, K. Hammerer, A. Imamog¯lu, H. J. Kimble, J. H. Müller, H. Okamoto, S. Schmid, J. M. Taylor, D. J. Wilson and A. Xuereb for discussions. This work was supported by the Japan Science and Technology Agency (JST), the Japan Society for the Promotion of Science (JSPS), the EU Project Q-ESSENCE, the Danish National Research Foundation Center for Quantum Optics (QUANTOP), the Danish Council for Independent Research (Technology and Production Science and Natural Science) and the DARPA QuASAR program.

Author information

Authors and Affiliations

Authors

Contributions

K.U., B.M.N. and E.S.P. designed the experiment. K.U., A.N. and T.B. worked on data collection and analysis. J.L. and S.S. fabricated the GaAs membranes. P.L. and E.S.P. planned and supervised the study. K.U. and E.S.P. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to E. S. Polzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 651 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usami, K., Naesby, A., Bagci, T. et al. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane. Nature Phys 8, 168–172 (2012). https://doi.org/10.1038/nphys2196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing