Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances

Abstract

Atom-based standards for length and time as well as other physical quantities such as magnetic fields show clear advantages by enabling stable and uniform measurements. Here we demonstrate a new method for measuring microwave (MW) electric fields based on quantum interference in a rubidium atom. Using a bright resonance prepared within an electromagnetically induced transparency window we could achieve a sensitivity of 30 μV cm−1 Hz−1/2 and demonstrate detection of MW electric fields as small as 8 μV cm−1 with a modest set-up. The sensitivity is limited, at present, by the stability of our lasers and can be significantly improved in the future. Our method can serve as a new atom-based traceable standard for MW electrometry, with its reproducibility, accuracy and stability promising advances towards levels comparable with those attained in magnetometry at present.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Level diagram and experimental set-up.
Figure 2: Three-level EIT and splitting from the MW electric fields.
Figure 3: Enhanced transmission of the four-level EIT signal due to the MW electric field.
Figure 4: Four-level EIT transmission signal as a function of MW electric field amplitude.

Similar content being viewed by others

References

  1. Hall, J. L. Nobel lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    Article  ADS  Google Scholar 

  2. Savukov, I. M., Seltzer, S. J., Romalis, M. V. & Sauer, K. L. Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005).

    Article  ADS  Google Scholar 

  3. Balabas, M. V., Karaulanov, T., Ledbetter, M. P. & Budker, D. Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. 105, 070801 (2010).

    Article  ADS  Google Scholar 

  4. Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

    Article  ADS  Google Scholar 

  5. Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602 (2010).

    Article  ADS  Google Scholar 

  6. Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).

    Article  ADS  Google Scholar 

  7. Tishchenko, V. A., Tokatly, V. I. & Luk’yanov, V. I. The beginning of the metrology of radio frequency electromagnetic fields and the first standards of electric field strength. Meas. Tech. 46, 76–84 (2003).

    Article  Google Scholar 

  8. Kanda, M. & Orr, R. D. Generation of standard electromagnetic fields in a TEM cell. NBS Technical note 1319 (1988).

  9. Kanda, M. Standard probes for electromagnetic field measurements. IEEE Trans. Antennas Propag. 41, 1349–1364 (1993).

    Article  ADS  Google Scholar 

  10. Kanda, M. Standard antennas for electromagnetic interference measurements and methods to calibrate them. IEEE Trans. Electromagn. Compat. 36, 261–273 (1994).

    Article  Google Scholar 

  11. Mal’ter, I. G., Pavlovskii, O. P., Korshunov, V. A. & Voronov, V. L. Russian and foreign millimeter band radio measuring instruments. Meas. Tech. 52, 997–1005 (2009).

    Article  Google Scholar 

  12. Tishchenko, V. A., Tokalty, V. I. & Luk’yanov, V. I. Upgrading radio frequency electromagnetic field standards part I. Meas. Tech. 46, 796–801 (2003).

    Article  Google Scholar 

  13. Tishchenko, V. A., Tokalty, V. I. & Luk’yanov, V. I. Upgrading radio frequency electromagnetic field standards part II. Meas. Tech. 46, 903–911 (2003).

    Article  Google Scholar 

  14. Electro-optical Sensor for Detecting Electric Fields; http://www.kyosemi.co.jp/en/.

  15. Sriram, S., Kingsley, S. A. & Boyd, J. T. Electro-optical sensor for detecting electric fields. US patent 5,267,336 (1992).

  16. Camparo, J. C. Atomic stabilization of electromagnetic field strength using Rabi resonances. Phys. Rev. Lett. 80, 222–225 (1998).

    Article  ADS  Google Scholar 

  17. Swan-Wood, T., Coffer, J. G. & Camparo, J. C. Precision measurements of absorption and refractive index using an atomic candle. IEEE Trans. Inst. Meas. 50, 1229–1233 (2001).

    Article  Google Scholar 

  18. Gordon, J. A., Holloway, C. L., Jefferts, S. & Heavner, T. 2010 Int. Symp. on Electromagnetic Compatibility 321–324 (2010).

    Book  Google Scholar 

  19. Kübler, H., Shaffer, J. P., Baluksian, T., Löw, R. & Pfau, T. Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nature Photon. 4, 112–116 (2010).

    Article  ADS  Google Scholar 

  20. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  21. Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

    Article  ADS  Google Scholar 

  22. Bason, M. G. et al. Enhanced electric field sensitivity of rf-dressed Rydberg dark states. New J. Phys. 12, 065015 (2010).

    Article  ADS  Google Scholar 

  23. Tanasittikosol, M. et al. Microwave dressing of Rydberg dark states. J. Phys. B 44, 184020 (2011).

    Article  ADS  Google Scholar 

  24. Gallagher, T. F. Rydberg Atoms 1st edn (Cambridge Univ. Press, 1994).

    Book  Google Scholar 

  25. Herrmann, P. P., Hoffnagle, J., Schlumpf, N., Telegdi, V. L. & Weis, A. Stark spectroscopy of forbidden two-photon transitions: A sensitive probe for the quantitative measurement of small electric fields. J. Phys. B 19, 1271–1280 (1986).

    Article  ADS  Google Scholar 

  26. Schramm, A. et al. Laser photoelectron attachment to molecules in a skimmed supersonic beam: Diagnostics of weak electric fields and attachment cross sections down to 20 μeV. Phys. Rev. Lett. 81, 778–781 (1998).

    Article  ADS  Google Scholar 

  27. Tauschinsky, A., Thijssen, R. M. T., Whitlock, S., van Linden van den Heuvell, H. B. & Spreeuw, R. J. C. Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys. Rev. A 81, 063411 (2010).

    Article  ADS  Google Scholar 

  28. Frey, M. T., Ling, X., Lindsay, B. G., Smith, K. A. & Dunning, F. B. Use of the Stark effect to minimize residual electric fields in an experimental volume. Rev. Sci. Instum. 64, 3649–3650 (1993).

    Article  ADS  Google Scholar 

  29. Osterwalder, A. & Merkt, F. Using high Rydberg states as electric field sensors. Phys. Rev. Lett. 82, 1831–1834 (1999).

    Article  ADS  Google Scholar 

  30. Auzinsh, M., Jayasinghe, L., Oelke, L., Ferber, R. & Shafer-Ray, N. Strobe imaging of electric fields by depolarization of Rydberg states of Hg. J. Phys. D 34, 1933–1938 (2001).

    Article  ADS  Google Scholar 

  31. Figger, H., Leuchs, G., Straubinger, R. & Walther, H. A photon detector for submillimetre wavelengths using Rydberg atoms. Opt. Commun. 33, 37–41 (1980).

    Article  ADS  Google Scholar 

  32. Goy, P. et al. Rydberg atom masers. II. Triggering by external radiation and applications to millimeter-wave detectors. Phys. Rev. A 27, 2065–2081 (1983).

    Article  ADS  Google Scholar 

  33. Arora, B., Safronova, M. S. & Clark, C. W. Determination of electric dipole matrix elements in K and Rb from Stark shift measurements. Phys. Rev. A 76, 052516 (2007).

    Article  ADS  Google Scholar 

  34. Li, W., Mourachko, I., Noel, M. W. & Gallagher, T. F. Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series. Phys. Rev. A 67, 052502 (2003).

    Article  ADS  Google Scholar 

  35. Mack, M. et al. Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency. Phys. Rev. A 83, 052515 (2011).

    Article  ADS  Google Scholar 

  36. Steck, D. A. Rubidium 87 D line data. available online at http://steck.us//alkalidata (Revision 2.1.4,23 December 2010).

  37. HP 8340B, HP 8341B Synthesized Sweepers, Hewlett-Packard Company, 1400 Fountaingrove Parkway, Santa Rosa, CA (1986).

  38. Piotrowicz, M. J. et al. Measurement of the electric dipole moments for transitions to Rubidium Rydberg states via Autler–Townes splitting. New J. Phys. 13, 093012 (2011).

    Article  ADS  Google Scholar 

  39. Schwettmann, A., Crawford, J., Overstreet, K. R. & Shaffer, J. P. Cold Cs Rydberg-gas interactions. Phys. Rev. A 74, 020701 (2006).

    Article  ADS  Google Scholar 

  40. Thomas, J. E. & Quivers, W. W. Transit-time effects in optically pumped coupled three-level systems. Phys. Rev. A 22, 2115–2121 (1980).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DARPA Quasar programme through a grant through ARO (60181-PH-DRP) and the NSF (PHY-1104424).

Author information

Authors and Affiliations

Authors

Contributions

J.P.S. and T.P. conceived the idea. J.P.S. led the project and wrote the paper. J.A.S., A.S. and H.K. carried out the experiments and reduced the data. A.S. and J.A.S. wrote the simulation programs. R.L. contributed useful ideas to the analysis of the experiment. All authors contributed extensively to the work.

Corresponding author

Correspondence to James P. Shaffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedlacek, J., Schwettmann, A., Kübler, H. et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nature Phys 8, 819–824 (2012). https://doi.org/10.1038/nphys2423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing