Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams

Abstract

Compact and affordable ion accelerators based on laser-produced plasmas have potential applications in many fields of science and medicine. However, the requirement of producing focusable, narrow-energy-spread, energetic beams has proved to be challenging. Here we demonstrate that laser-driven collisionless shocks can accelerate proton beams to 20 MeV with extremely narrow energy spreads of about 1% and low emittances. This is achieved using a linearly polarized train of multiterawatt CO2 laser pulses interacting with a gas-jet target. Computer simulations show that laser-heated electrons launch a collisionless shock that overtakes and reflects the protons in the slowly expanding hydrogen plasma, resulting in a narrow energy spectrum. Simulations predict the production of 200 MeV protons needed for radiotherapy by using current laser technology. These results open a way for developing a compact and versatile, high-repetition-rate ion source for medical and other applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup, the CO2 laser pulse profile and an image of a CR39 detector.
Figure 2: Proton energy spectra.
Figure 3: Laser-produced plasma profile.
Figure 4: Simulation results.
Figure 5: Simulated proton spectra.

Similar content being viewed by others

References

  1. Bulanov, S. V., Esirkepov, T. Zh., Khoroshkov, V. S., Kuznetsov, A. V. & Pegoraro, F. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240–247 (2002).

    Article  ADS  Google Scholar 

  2. Linz, U. & Alonso, J. What will it take for laser driven proton accelerators to be applied to tumor therapy? Phys. Rev. STAB 10, 094801 (2007).

    ADS  Google Scholar 

  3. Borghesi, M. et al. Electric field detection in laser–plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 2214–2220 (2002).

    Article  ADS  Google Scholar 

  4. Spencer, I. et al. Laser generation of proton beams for the production of short-lived positron emitting isotopes. Nucl. Instrum. Methods B-183, 449–458 (2001).

    Article  ADS  Google Scholar 

  5. Krushelnick, K. et al. Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source. IEEE Trans. Plasma Sci. 28, 1110–1115 (2000).

    Article  ADS  Google Scholar 

  6. Roth, M. et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001).

    Article  ADS  Google Scholar 

  7. Denavit, J. Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052–3055 (1992).

    Article  ADS  Google Scholar 

  8. Zhidkov, A., Uesaka, M., Sasaki, A. & Daido, H. Ion acceleration in a solitary wave by an intense picosecond laser pulse. Phys. Rev. Lett. 89, 215002 (2002).

    Article  ADS  Google Scholar 

  9. Silva, L. O., Marti, M., Davies, J. R. & Fonseca, R. A. Proton shock acceleration in laser–plasma interactions. Phys. Rev. Lett. 92, 015002 (2004).

    Article  ADS  Google Scholar 

  10. Sagdeev, R. Z. & Kennel, C. F. Collisionless shock waves. Sci. Am. 264, 106–113 (1991).

    Article  ADS  Google Scholar 

  11. Adriani, O. et al. PAMELA measurements of cosmic-ray, proton, and helium spectra. (PAMELA collaboration). Science 332, 69–72 (2011).

    Article  ADS  Google Scholar 

  12. Fuchs, J. et al. Laser-driven proton scaling laws and new paths towards energy increase. Nature Phys. 2, 48–54 (2006).

    Article  ADS  Google Scholar 

  13. Robson, L. et al. Scaling of proton acceleration driven by petawatt-laser–plasma interactions. Nature Phys. 3, 58–62 (2007).

    Article  ADS  Google Scholar 

  14. Cowan, T. E. et al. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801 (2004).

    Article  ADS  Google Scholar 

  15. Esirkepov, T., Borghesi, M., Bulanov, S. V., Mourou, G. & Tajima, T. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004).

    Article  ADS  Google Scholar 

  16. Macchi, A., Cattani, F., Liseykina, T. V. & Cornolti, F. Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003 (2005).

    Article  ADS  Google Scholar 

  17. Ledingham, K. W. D. & Galster, W. Laser driven particle and photon beams and some applications. New J. Phys. 12, 045005 (2010).

    Article  ADS  Google Scholar 

  18. Snavely, R. A. et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000).

    Article  ADS  Google Scholar 

  19. Hegelich, B. M. et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006).

    Article  ADS  Google Scholar 

  20. Schwoerer, H. et al. Laser–plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445–448 (2006).

    Article  ADS  Google Scholar 

  21. Toncian, T. et al. Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science 312, 410–413 (2011).

    Article  ADS  Google Scholar 

  22. Schollmeier, M. et al. Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Phys. Rev. Lett. 101, 055004 (2008).

    Article  ADS  Google Scholar 

  23. Noda, A. et al. Phase rotation scheme of laser-produced ions for reduction of the energy spread. Laser Phys. 16, 647–653 (2006).

    Article  ADS  Google Scholar 

  24. Henig, A. et al. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009).

    Article  ADS  Google Scholar 

  25. Palmer, C. A. J. et al. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801 (2011).

    Article  ADS  Google Scholar 

  26. Najmudin, Z. et al. Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target. Phys. Plasmas 18, 056705 (2011).

    Article  ADS  Google Scholar 

  27. Haberberger, D., Tochitsky, S. & Joshi, C. Fifteen terawatt picosecond CO2 laser system. Opt. Express 18, 17865–17875 (2010).

    Article  ADS  Google Scholar 

  28. Tochitsky, S. Ya. et al. Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier. Opt. Lett. 26, 813–815 (2001).

    Article  ADS  Google Scholar 

  29. Fedosejevs, R., Tomov, I. V., Burnett, N. H., Enright, G. D. & Richardson, M. C. Self-steepening of the density profile of a CO2-laser-produced plasma. Phys. Rev. Lett. 39, 932–935 (1977).

    Article  ADS  Google Scholar 

  30. Young, P. E. et al. Time-dependent channel formation in a laser-produced plasma. Phys. Rev. Lett. 75, 1082–1085 (1995).

    Article  ADS  Google Scholar 

  31. Wilks, S. C. & Kruer, W. L. Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quantum Electron. 33, 1954–1968 (1997).

    Article  ADS  Google Scholar 

  32. Fonseca, R. A. et al. OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators. Lect. Note Comput. Sci. 2331, 342–351 (2002).

    Article  Google Scholar 

  33. Wilks, S. C. et al. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542–549 (2001).

    Article  ADS  Google Scholar 

  34. Leferve, H. W., Sealock, R. M. & Connolly, R. C. Response of CR-39 to 2-MeV microbeams of H, He, and Ne. Rev. Sci. Instrum. 53, 1221–1227 (1982).

    Article  ADS  Google Scholar 

  35. Semushin, S. & Malka, V. High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72, 2961–2965 (2001).

    Article  ADS  Google Scholar 

  36. Alcock, A. J. & Corkum, P. B. Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors. Can. J. Phys. 57, 1280–1290 (1979).

    Article  ADS  Google Scholar 

  37. Blue, B. E. et al. Plasma-wakefield acceleration of an intense positron beam. Phys. Rev. Lett. 90, 214801 (2003).

    Article  ADS  Google Scholar 

  38. Tsung, F. S. et al. Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers. Phys. Plasmas 13, 056708 (2006).

    Article  ADS  Google Scholar 

  39. Willingale, L. et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96, 245002 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work supported by DOE Grant DE-FG02-92-ER40727, NSF grant PHY-0936266 at UCLA, European Research Council ERC-2010-AdG Grant 267841 and FCT (Portugal) grants PTDC/FIS/111720/2009 and SFRH/BD/38952/2007. We thank A. Pak, N. Lemos and K. A. Marsh for characterizing the gas-jet targets. Computing resources provided by PRACE (Tier 0) on Jugene based in Germany, the Hoffman Cluster (UCLA) and the IST Cluster (IST Lisbon).

Author information

Authors and Affiliations

Authors

Contributions

D.H., S.T., C.G. and C.J. conceived and designed the experiments, carried out the experiments, analysed the data, contributed analysis tools and wrote the paper. F.F., L.O.S., R.A.F. and W.B.M. carried out the numerical simulations and wrote the paper.

Corresponding author

Correspondence to Chan Joshi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 755 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberberger, D., Tochitsky, S., Fiuza, F. et al. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nature Phys 8, 95–99 (2012). https://doi.org/10.1038/nphys2130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing