Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Consistent model of magnetism in ferropnictides

Abstract

The discovery of superconductivity in LaFeAsO introduced ferropnictides as a new class of superconducting compounds with critical temperatures second only to those of the cuprates. Although the presence of iron makes the ferropnictides radically different from the cuprates, antiferromagnetism in the parent compounds suggests that superconductivity and magnetism are interrelated in both of them. However, the character of magnetic interactions and spin fluctuations in ferropnictides is not reasonably described by conventional models of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with a biquadratic interaction, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, our description explains numerous experimental observations, including the peculiarities of the spin-wave spectrum, thin domain walls and crossover from a first- to second-order phase transition under doping. The model also offers insight into the occurrence of the nematic phase above the antiferromagnetic phase transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of the biquadratic coupling on the spin-wave spectrum.
Figure 2: Phase diagram.
Figure 3: Evidence of the nematic phase.

Similar content being viewed by others

References

  1. Mazin, I. I. Superconductivity gets an iron boost. Nature 464, 183–186 (2010).

    Article  ADS  Google Scholar 

  2. Lynn, J. W. & Dai, P. Neutron studies of the iron-based family of high TC magnetic superconductors. Physica C 469, 469–476 (2009).

    Article  ADS  Google Scholar 

  3. Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).

    Article  ADS  Google Scholar 

  4. Mazin, I. I. & Schmalian, J. Pairing symmetry and pairing state in ferropnictides: Theoretical overview. Physica C 469, 614–627 (2009).

    Article  ADS  Google Scholar 

  5. Chandra, P., Coleman, P. & Larkin, A. I. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett. 64, 88–91 (1990).

    Article  ADS  Google Scholar 

  6. Yin, Z. P. et al. Electron–hole symmetry and magnetic coupling in antiferromagnetic LaFeAsO. Phys. Rev. Lett. 101, 047001 (2008).

    Article  ADS  Google Scholar 

  7. Diallo, S. O. et al. Itinerant magnetic excitations in antiferromagnetic CaFe2As2 . Phys. Rev. Lett. 102, 187206 (2009).

    Article  ADS  Google Scholar 

  8. Zhao, J. et al. Spin waves and magnetic exchange interactions in CaFe2As2 . Nature Phys. 5, 555–560 (2009).

    Article  ADS  Google Scholar 

  9. McQueeney, R. J. et al. Anisotropic three-dimensional magnetism in CaFe2As2 . Phys. Rev. Lett. 101, 227205 (2008).

    Article  ADS  Google Scholar 

  10. Pulikkotil, J. J., Ke, L., van Schilfgaarde, M., Kotani, T. & Antropov, V. P. Magnetism and exchange coupling in iron pnictides. Supercond. Sci. Technol. 23, 054012 (2010).

    Article  ADS  Google Scholar 

  11. Han, M. J., Yin, Q., Pickett, W. E. & Savrasov, S. Y. Anisotropy, itineracy, and magnetic frustration in high-TC iron pnictides. Phys. Rev. Lett. 102, 107003 (2009).

    Article  ADS  Google Scholar 

  12. Yaresko, A. N., Lin, G-Q., Antonov, V. N. & Andersen, O. K. Interplay between magnetic properties and Fermi surface nesting in iron pnictides. Phys. Rev. B 79, 144421 (2009).

    Article  ADS  Google Scholar 

  13. Chuang, T-M. et al. Nematic electronic structure in the parent state of the iron-based superconductor Ca(Fe1xCox)2As2 . Science 327, 181–184 (2010).

    Article  ADS  Google Scholar 

  14. Krüger, F., Kumar, S., Zaanen, J. & van den Brink, J. Spin–orbital frustrations and anomalous metallic state in iron-pnictide superconductors. Phys. Rev. B 79, 054504 (2009).

    Article  ADS  Google Scholar 

  15. Lee, C-C., Yin, W-G. & Ku, W. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).

    Article  ADS  Google Scholar 

  16. Chen, C-C., Moritz, B., van den Brink, J., Devereaux, T. P. & Singh, R. R. P. Finite-temperature spin dynamics and phase transitions in spin–orbital models. Phys. Rev. B 80, 180418(R) (2009).

    Article  ADS  Google Scholar 

  17. Chen, C-C. et al. Orbital order and spontaneous orthorhombicity in iron pnictides. Phys. Rev. B 82, 100504 (2010).

    Article  ADS  Google Scholar 

  18. Lv, W., Krüger, F. & Philips, P. Orbital ordering and unfrustrated (π,0) magnetism from degenerate double exchange in the iron pnictides. Phys. Rev. B 82, 045125 (2010).

    Article  ADS  Google Scholar 

  19. Lee, C., Lin, W. & Ku, W. Unified picture for magnetic correlations in iron-based superconductors. Phys. Rev. Lett. 105, 107004 (2010).

    Article  ADS  Google Scholar 

  20. Tanatar, M. A. et al. Uniaxial-strain mechanical detwinning of CaFe2As2 and BaFe2As2 crystals: Optical and transport study. Phys. Rev. B 81, 184508 (2010).

    Article  ADS  Google Scholar 

  21. Fang, C., Yao, H., Tsai, W-F., Hu, J. & Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).

    Article  ADS  Google Scholar 

  22. Xu, C., Müller, M. & Sachdev, S. Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501(R) (2008).

    Article  ADS  Google Scholar 

  23. Ke, L., van Schilfgaarde, M., Pulikkotil, J. J., Kotani, T. & Antropov, V. P. Low energy, coherent, Stoner-like excitations in CaFe2As2 . Phys. Rev. B 83, 060404(R) (2011).

    Article  ADS  Google Scholar 

  24. Matveev, V. M. & Nagaev, E. L. Non-Heisenberg exchange interaction and related effects. Sov. Phys.—Solid State 14, 408 (1972).

    Google Scholar 

  25. Barzykin, V. & Gor’kov, L. P. Role of striction at magnetic and structural transitions in iron pnictides. Phys. Rev. B 79, 134510 (2009).

    Article  ADS  Google Scholar 

  26. Nagaev, E. L. Anomalous magnetic structures and phase transitions in non-Heisenberg magnetic materials. Sov. Phys.—Usp. 25, 31–57 (1982).

    Article  ADS  Google Scholar 

  27. Ni, N. et al. First-order structural phase transition in CaFe2As2 . Phys. Rev. B 78, 014523 (2008).

    Article  ADS  Google Scholar 

  28. Weber, C. et al. Ising transition driven by frustration in a 2D classical model with continuous symmetry. Phys. Rev. Lett. 91, 177202 (2003).

    Article  ADS  Google Scholar 

  29. Kapikranian, O., Berche, B. & Holovatch, Yu. Quasi-long-range ordering in a finite-size 2D classical Heisenberg model. J. Phys. A 40, 3741–3748 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  30. Ni, N. et al. Phase diagrams of Ba(Fe1−xMx)2As2 single crystals (M=Rh and Pd). Phys. Rev. B 80, 024511 (2009).

    Article  ADS  Google Scholar 

  31. Mun, E. D., Bud’ko, S. L., Ni, N., Thaler, A. N. & Canfield, P. C. Thermoelectric power and Hall coefficient measurements on Ba(Fe1−xTx)2As2 (T=Co and Cu) single crystals. Phys. Rev. B 80, 054517 (2009).

    Article  ADS  Google Scholar 

  32. Fernandes, R. M. et al. Unconventional pairing in the iron arsenide superconductors. Phys. Rev. B 81, 140501(R) (2010).

    Article  ADS  Google Scholar 

  33. Qureshi, N. et al. Crystal and magnetic structure of the oxypnictide superconductor LaO1−xFxFeAs: A neutron-diffraction study. Phys. Rev. B 82, 184521 (2010).

    Article  ADS  Google Scholar 

  34. Li, H-F. et al. Phase transitions and iron-ordered moment form factor in LaFeAsO. Phys. Rev. B 82, 064409 (2010).

    Article  ADS  Google Scholar 

  35. Park, J. T. et al. Symmetry of spin excitation spectra in the tetragonal paramagnetic and superconducting phases of 122-ferropnictides. Phys. Rev. B 82, 134503 (2010).

    Article  ADS  Google Scholar 

  36. Challa, M. S. S., Landau, D. P. & Binder, K. Finite-size effects at temperature-driven first-order transitions. Phys. Rev. B 34, 1841–1852 (1986).

    Article  ADS  Google Scholar 

  37. Binder, K. Finite size scaling analysis of Ising model block distribution functions. Z. Phys. B 43, 119–140 (1981).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. L. Bud’ko and D. S. Inosov for fruitful discussions, and to I. I. Mazin for critical reading of the manuscript and useful comments. Work at UNL was supported by NSF DMR-1005642 and EPS-1010674. Work at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract No. DE-AC02-07CH11358. K.D.B. is a Cottrell Scholar of Research Corporation.

Author information

Authors and Affiliations

Authors

Contributions

A.L.W. carried out the thermodynamic calculations and analysed the results with K.D.B. K.D.B. and V.P.A. designed the study, carried out the spin-wave analysis and wrote the paper. All authors discussed the results.

Corresponding author

Correspondence to Kirill D. Belashchenko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wysocki, A., Belashchenko, K. & Antropov, V. Consistent model of magnetism in ferropnictides. Nature Phys 7, 485–489 (2011). https://doi.org/10.1038/nphys1933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing