Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heat capacity through the magnetic-field-induced resistive transition in an underdoped high-temperature superconductor

Abstract

The underlying physics of the magnetic-field induced resistive state in lightly doped high-temperature cuprate superconductorsremains a mystery. One interpretation is that the application of magnetic field destroys the d-wave superconducting gap, uncovering a Fermi surface that behaves as a Fermi liquid. Another view is that an applied magnetic field destroys long-range superconducting phase coherence, but the superconducting gap amplitude survives. By measuring the specific heat of YBa2Cu3O6.56 we determine the quasiparticle density of states from the superconducting state well into the magnetic-field induced resistive state. At very high magnetic fields the specific heat exhibits both the conventional temperature dependence and quantum oscillations expected for a Fermi liquid. On the other hand, the magnetic-field dependence of the quasiparticle density of states follows behaviour that persists smoothly through the zero-resistance transition, giving evidence of a developed d-wave superconducting gap over the entire magnetic field range measured.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-temperature electronic specific heat evolution with temperature.
Figure 2: Oscillatory component of electronic specific heat.
Figure 3: Temperature dependence of the specific heat.

Similar content being viewed by others

References

  1. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

  2. Leboeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007).

    Article  ADS  Google Scholar 

  3. Sebastian, S. E. et al. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature 454, 200–203 (2008).

    Article  ADS  Google Scholar 

  4. Yelland, E. A. et al. Quantum oscillations in the underdoped cuprate YBa2Cu4O8 . Phys. Rev. Lett. 100, 047003 (2008).

    Article  ADS  Google Scholar 

  5. Bangura, A. F. et al. Small Fermi surface pockets in underdoped high temperature superconductors: Observation of Shubnikov–de Haas oscillations in YBa2Cu4O8 . Phys. Rev. Lett. 100, 047004 (2008).

    Article  ADS  Google Scholar 

  6. Audouard, A. et al. Multiple quantum oscillations in the de Haas–van Alphen spectra of the underdoped high-temperature superconductor YBa2Cu3O6.5 . Phys. Rev. Lett. 103, 157003 (2009).

    Article  ADS  Google Scholar 

  7. Singleton, J. et al. Magnetic quantum oscillations in YBa2Cu3O6.61 and YBa2Cu3O6.69 in fields of up to 85 T: Patching the hole in the roof of the superconducting dome. Phys. Rev. Lett. 104, 086403 (2010).

    Article  ADS  Google Scholar 

  8. Wang, Y. et al. High field phase diagram of cuprates derived from the Nernst effect. Phys. Rev. Lett. 88, 257003 (2002).

    Article  ADS  Google Scholar 

  9. Boebinger, G. S. et al. Insulator-to-metal crossover in the normal state of La2−xSrxCuO4 near optimum doping. Phys. Rev. Lett. 104, 5417–5420 (1996).

    Article  ADS  Google Scholar 

  10. Li, L., Checkelsky, J. G., Komiya, S., Ando, Y. & Ong, N. P. Low-temperature vortex liquid in La2−xSrxCuO4 . Nature Phys. 3, 311–314 (2007).

    Article  ADS  Google Scholar 

  11. Cyr-Choiniere, O. et al. Enhancement of the Nernst effect by stripe order in a high-Tc superconductor. Nature 458, 743–745 (2009).

    Article  ADS  Google Scholar 

  12. Moler, K. A. et al. Magnetic field dependence of the density of states of YBa2Cu3O6.95 as determined from the specific heat. Phys. Rev. Lett. 73, 2744–2747 (1994).

    Article  ADS  Google Scholar 

  13. Revaz, B. et al. d-wave scaling relations in the mixed-state specific heat of YBa2Cu3O7 . Phys. Rev. Lett. 80, 3364–3367 (1998).

    Article  ADS  Google Scholar 

  14. Wright, D. A. et al. Low-temperature specific heat of YBa2Cu3O7−δ, 0≤δ≤0.2: Evidence for d-wave pairing. Phys. Rev. Lett. 82, 1550–1553 (1999).

    Article  ADS  Google Scholar 

  15. Wang, Y., Revaz, B., Erb, A. & Junod, A. Direct observation and anisotropy of the contribution of gap nodes in the low-temperature specific heat of YBa2Cu3O7 . Phys. Rev. B 63, 094508 (2001).

    Article  ADS  Google Scholar 

  16. Volovik, G. E. Superconductivity with lines of gap nodes: Density of states in the vortex. JETP Lett. 58, 457–461 (1993).

    ADS  Google Scholar 

  17. Simon, S. H. & Lee, P. A. Scaling of the quasiparticle spectrum for d-wave superconductors. Phys. Rev. Lett. 78, 1548–1551 (1997).

    Article  ADS  Google Scholar 

  18. Franz, M. & Tešanovć, Z. Self-consistent electronic structure of a d x 2 − y 2 and a d x 2 − y 2 +id xy vortex. Phys. Rev. Lett. 80, 4763–4766 (1998).

    ADS  Google Scholar 

  19. Mel’nikov, A. S. Quantization of the quasiparticle spectrum in the mixed state of d-wave superconductors. J. Phys. Condens. Matter 11, 4219–4229 (1999).

    Article  ADS  Google Scholar 

  20. Vekhter, I., Hirschfeld, P. J. & Nicol, E. J. Thermodynamics of d-wave superconductors in a magnetic field. Phys. Rev. B 64, 064513 (2001).

    Article  ADS  Google Scholar 

  21. Sebastian, S. E. et al. Metal–insulator quantum critical point beneath the high Tc superconducting dome. Proc. Natl Acad Sci. USA 107, 6175–6179 (2010).

    Article  ADS  Google Scholar 

  22. Jaudet, C. et al. Quantum oscillations in underdoped YBa2Cu3O6.5 . Physica B 404, 354–356 (2009).

    Article  ADS  Google Scholar 

  23. Sutherland, M. et al. Thermal conductivity across the phase diagram of cuprates: Low-energy quasiparticles and doping dependence of the superconducting gap. Phys. Rev. B 67, 174520 (2003).

    Article  ADS  Google Scholar 

  24. Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

    Book  Google Scholar 

  25. Ramshaw, B. J. et al. Angle-dependence of quantum oscillations in YBa2Cu3O6.59 shows free spin behaviour of quasiparticles. Nature Phys. published online 10.1038/nphys1873, (19 December 2010).

  26. Fisher, R. A., Gordon, J. E. & Phillips, N. in Handbook of High-Temperature Superconductivity (eds Schrieffer, J. R. & Brooks, J. S.) Ch. 9, 326–397 (Springer, 2007).

    Google Scholar 

  27. Bangura, A. F. et al. Fermi surface and electronic homogeneity of the overdoped cuprate superconductor Tl2Ba2CuO6+δ as revealed by quantum oscillations. Phys. Rev. B 82, 140501 (2010).

    Article  ADS  Google Scholar 

  28. Wade, J. M., Loram, J. W., Mirza, K. A., Cooper, J. R. & Tallon, J. L. Electronic specific heat of Tl2Ba2CuO6+δ from 2 K to 300 K for 0≤δ≤0.1. J. Supercond. 7, 261–264 (1994).

    Article  ADS  Google Scholar 

  29. Harrison, N. et al. de Haas–van Alphen effect in the vortex state of Nb3Sn. Phys. Rev. B 50, 4208–4211 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge discussions with N. Harrison, P. Hirschfeld, S. Kivelson, P. A. Lee, R. McDonald, S. Sachdev, J. Singleton, Z. Tesanovic, T. Senthil, and C. M. Varma. S.C.R. acknowledges financial support from ICAM. W.N.H., R.L., and D.A.B. are supported by the Natural Science and Engineering Research Council of Canada and the Canadian Institute for Advanced Research. O.V. was supported in part by the NSF CAREER award under Grant No. DMR-0955561. The National High Magnetic Field Laboratory is supported by the State of Florida and the National Science Foundation’s Division of Materials Research through DMR-0654118.

Author information

Authors and Affiliations

Authors

Contributions

S.C.R., G.S.B., J.B.B., A.M., F.F.B. and J.B.K. developed the specific heat equipment and collected the data. D.A.B., W.N.H. and R.L. grew the sample and contributed to interpretation of the results. O.V., S.C.R., G.S.B., A.M. and J.B.K. contributed to the data analysis and interpretation and wrote the manuscript.

Corresponding author

Correspondence to Scott C. Riggs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1632 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riggs, S., Vafek, O., Kemper, J. et al. Heat capacity through the magnetic-field-induced resistive transition in an underdoped high-temperature superconductor. Nature Phys 7, 332–335 (2011). https://doi.org/10.1038/nphys1921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing