Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Excitable particles in an optical torque wrench

Abstract

The optical torque wrench is a laser trapping technique capable of applying and directly measuring torque on microscopic birefringent particles using spin momentum transfer, and has found application in the measurement of static torsional properties of biological molecules such as single DNAs. Motivated by the potential of the optical torque wrench to access the fast rotational dynamics of biological systems, a result of its all-optical manipulation and detection, we focus on the angular dynamics of the trapped birefringent particle, demonstrating its excitability in the vicinity of a critical point. This links the optical torque wrench to nonlinear dynamical systems such as neuronal and cardiovascular tissues, nonlinear optics and chemical reactions, all of which display an excitable binary (‘all-or-none’) response to input perturbations. On the basis of this dynamical feature, we devise and implement a conceptually new sensing technique capable of detecting single perturbation events with high signal-to-noise ratio and continuously adjustable sensitivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurements of torque on a birefringent particle.
Figure 2: The potential experienced by the birefringent particle, and corresponding phase plots.
Figure 3: Demonstration of the excitability of a rotating birefringent cylinder in an optical torque wrench.
Figure 4: Probability distribution for the interspike time of events triggered by thermal noise.
Figure 5: Sensing through excitability.

Similar content being viewed by others

References

  1. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491–505 (2008).

    Article  Google Scholar 

  2. Bustamante, C., Macosko, J. & Wuite, G. Grabbing the cat by the tail: Manipulating molecules one by one. Nat. Rev. Mol. Cell Biol. 1, 130–136 (2000).

    Article  Google Scholar 

  3. Funnell, B. E., Baker, T. A. & Kornberg, A. In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. J. Biol. Chem. 262, 10327–10334 (1987).

    Google Scholar 

  4. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).

    Article  ADS  Google Scholar 

  5. Yoshida, M., Muneyuki, E. & Hisabori, T. ATP synthase, a marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Biol. 2, 669–677 (2001).

    Article  Google Scholar 

  6. Sowa, Y. & Berry, R. M. Bacterial flagellar motor. Q. Rev. Biophys. 41, 103–132 (2008).

    Article  Google Scholar 

  7. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    Article  ADS  Google Scholar 

  8. Forth, S. et al. Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. Phys. Rev. Lett. 100, 148301 (2008).

    Article  ADS  Google Scholar 

  9. Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003).

    Article  ADS  Google Scholar 

  10. Celedon, A. et al. Magnetic tweezers measurement of single molecule torque. Nano Lett. 9, 1720–1725 (2009).

    Article  ADS  Google Scholar 

  11. Lipfert, J., Kerssemakers, J. W. J., Jager, T. & Dekker, N. H. Magnetic torque tweezers: Measuring torsional stiffness in DNA and RecA-DNA filaments. Nature Methods published online 10.1038/nmeth.1520, (17 October 2010).

  12. La Porta, A. & Wang, M. D. Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).

    Article  ADS  Google Scholar 

  13. Deufel, C., Forth, S., Simmons, C. R., Dejgosha, S. & Wang, M. D. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nature Methods 4, 223–225 (2007).

    Article  Google Scholar 

  14. Gutierrez-Medina, B., Andreasson, J. O. L., Greenleaf, W. J., La Porta, A. & Block, S. M. An optical apparatus for rotation and trapping. Methods Enzymol. 475, 377–404 (2010).

    Article  Google Scholar 

  15. Adler, R. A study of locking phenomena in oscillators. Proc. IRE 34, 351–357 (1946).

    Article  Google Scholar 

  16. Izhikevich, E. M. Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000).

    Article  MathSciNet  Google Scholar 

  17. Hodgkin, A. L., Huxley, A. F. & Katz, B. Measurement of current–voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952).

    Article  Google Scholar 

  18. Rush, A. M. et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl Acad. Sci. USA 103, 8245–8250 (2006).

    Article  ADS  Google Scholar 

  19. Izhikevich, E. M. Dynamical Systems in Neuroscience (MIT Press, 2006).

    Book  Google Scholar 

  20. Feingold, M., Gonzalez, D. L., Piro, O. & Viturro, H. Phase locking, period doubling, and chaotic phenomena in externally driven excitable systems. Phys. Rev. A 37, 4060–4063 (1988).

    Article  ADS  Google Scholar 

  21. Glass, L., Hunter, P. & McCulloch, A. Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function (Springer, 1991).

    Book  Google Scholar 

  22. Barland, S., Piro, O., Giudici, M., Tredicce, J. R. & Balle, S. Experimental evidence of van der Pol–Fitzhugh–Nagumo dynamics in semiconductor optical amplifiers. Phys. Rev. E 68, 036209 (2003).

    Article  ADS  Google Scholar 

  23. Yacomotti, A. M. et al. Interspike time distribution in noise driven excitable systems. Phys. Rev. Lett. 83, 292–295 (1999).

    Article  ADS  Google Scholar 

  24. Coullet, P., Gilli, J. M., Monticelli, M. & Vandenberghe, N. A damped pendulum forced with a constant torque. Am. J. Phys. 73, 1122–1128 (2005).

    Article  ADS  Google Scholar 

  25. Epstein, I. R. & Pojman, J. A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford Univ. Press, 1998).

    Google Scholar 

  26. Shelton, W. A., Bonin, K. D. & Walker, T. G. Nonlinear motion of optically torqued nanorods. Phys. Rev. E 71, 036204 (2005).

    Article  ADS  Google Scholar 

  27. Rothmayer, M., Tierney, D., Frins, E., Dultz, W. & Schmitzer, H. Irregular spin angular momentum transfer from light to small birefringent particles. Phys. Rev. A 80, 043801 (2009).

    Article  ADS  Google Scholar 

  28. Rodriguez-Otazo, M., Augier-Calderin, A., Galaup, J-P., Lamère, J-F. & Fery-Forgues, S. High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light. Appl. Opt. 48, 2720–2730 (2009).

    Article  ADS  Google Scholar 

  29. McNaughton, B. H., Agayan, R. R., Clarke, R., Smith, R. G. & Kopelman, R. Single bacterial cell detection with nonlinear rotational frequency shifts of driven magnetic microspheres. Appl. Phys. Lett. 91, 224105 (2007).

    Article  ADS  Google Scholar 

  30. Helgesen, G., Pieranski, P. & Skjeltorp, A. T. Nonlinear phenomena in systems of magnetic holes. Phys. Rev. Lett. 64, 1425–1428 (1990).

    Article  ADS  Google Scholar 

  31. Eguia, M. C. & Mindlin, G. B. Distribution of interspike times in noise-driven excitable systems. Phys. Rev. E 61, 6490–6499 (2000).

    Article  ADS  Google Scholar 

  32. Leach, J. et al. Comparison of Faxén’s correction for a microsphere translating or rotating near a surface. Phys. Rev. E 79, 026301 (2009).

    Article  ADS  Google Scholar 

  33. Tolić-Norrelykke, S. F. et al. Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77, 103101 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. La Porta for graciously sharing key aspects of the construction of OTW, M. Wang for discussion of polarization, E. van der Drift, M. Zuiddam, A. van Run and M. van der Krogt of the Delft Nanofacility and J. Andreasson of Stanford University for advice on the microfabrication of quartz cylinders, M. Wiggin for help in fabricating them, J. van der Does, D. de Roos and J. Beekman for help with instrumentation and infrastructure, J. Kerssemakers, I. de Vlaminck, M. van Loenhout, S. Klijnhout and J. Lipfert for stimulating discussions, and the TU Delft, FOM (Dutch Foundation for Research on Matter), NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek) and the European Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Contributions

F.P. and Z.H. contributed equally to this work. F.P., S.B. and N.H.D. conceived and designed the experiments. F.P., M.v.O. carried out the experiments. Z.H. developed the nanofabrication protocols. F.P., Z.H., S.B. and M.v.O. analysed the data. Z.H. and S.B. contributed materials and analysis tools. F.P., Z.H., S.B. and N.H.D. wrote the paper.

Corresponding author

Correspondence to Nynke H. Dekker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 557 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedaci, F., Huang, Z., van Oene, M. et al. Excitable particles in an optical torque wrench. Nature Phys 7, 259–264 (2011). https://doi.org/10.1038/nphys1862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing