Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB

Abstract

Several competing technologies continue to advance the field of terahertz science; of particular importance has been the development of a terahertz semiconductor quantum cascade laser (QCL), which is arguably the only solid-state terahertz source with average optical power levels of much greater than a milliwatt. Terahertz QCLs are required to be cryogenically cooled and improvement of their temperature performance is the single most important research goal in the field. Thus far, their maximum operating temperature has been empirically limited to ω/kB, a largely inexplicable trend that has bred speculation that a room-temperature terahertz QCL may not be possible in materials used at present. Here, we argue that this behaviour is an indirect consequence of the resonant-tunnelling injection mechanism employed in all previously reported terahertz QCLs. We demonstrate a new scattering-assisted injection scheme to surpass this limit for a 1.8-THz QCL that operates up to 1.9ω/kB (163 K). Peak optical power in excess of 2 mW was detected from the laser at 155 K. This development should make QCL technology attractive for applications below 2 THz, and initiate new design strategies for realizing a room-temperature terahertz semiconductor laser.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resonant-tunnelling versus scattering-assisted injection for terahertz quantum cascade lasers.
Figure 2: Reduction in the operating dynamic range with frequency for resonant-tunnelling injection.
Figure 3: A 1.8-THz QCL based on the scattering-assisted injection design scheme.
Figure 4: Experimental results as a function of temperature.

Similar content being viewed by others

References

  1. Siegel, P. H. Terahertz technology. IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).

    Article  ADS  Google Scholar 

  2. Chan, W. L., Diebel, J. & Mittleman, D. M. Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007).

    Article  ADS  Google Scholar 

  3. Ferguson, B. & Zhang, X-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2006).

    Article  ADS  Google Scholar 

  4. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  5. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  6. Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  7. Scalari, G. et al. THz and sub-THz quantum cascade lasers. Laser Photon. Rev. 3, 45–66 (2009).

    Article  ADS  Google Scholar 

  8. Qin, Q., Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. Tuning a terahertz wire laser. Nature Photon. 3, 732–737 (2009).

    Article  ADS  Google Scholar 

  9. Amanti, M. I., Fischer, M., Scalari, G., Beck, M. & Faist, J. Low-divergence single-mode terahertz quantum cascade laser. Nature Photon. 3, 586–590 (2009).

    Article  ADS  Google Scholar 

  10. Kumar, S., Hu, Q. & Reno, J. L. 186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Appl. Phys. Lett. 94, 131105 (2009).

    Article  ADS  Google Scholar 

  11. Walther, C. et al. Quantum cascade lasers operating from 1.2 to 1.6 THz. Appl. Phys. Lett. 91, 131122 (2007).

    Article  ADS  Google Scholar 

  12. Kazarinov, R. F. & Suris, R. A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 5, 707–709 (1971).

    Google Scholar 

  13. Bonilla, L. L. & Grahn, H. T. Non-linear dynamics of semiconductor superlattices. Rep. Prog. Phys. 68, 577–683 (2005).

    Article  ADS  Google Scholar 

  14. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  15. Williams, B. S., Callebaut, H., Kumar, S., Hu, Q. & Reno, J. L. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation. Appl. Phys. Lett. 82, 1015–1017 (2003).

    Article  ADS  Google Scholar 

  16. Scalari, G. et al. Far-infrared ( ) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl. Phys. Lett. 82, 3165–3167 (2003).

    Article  ADS  Google Scholar 

  17. Kumar, S., Williams, B. S., Hu, Q. & Reno, J. L. 1.9 THz quantum-cascade lasers with one-well injector. Appl. Phys. Lett. 88, 121123 (2006).

    Article  ADS  Google Scholar 

  18. Walther, C., Scalari, G., Faist, J., Beere, H. & Ritchie, D. Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8-THz. Appl. Phys. Lett. 89, 231121 (2006).

    Article  ADS  Google Scholar 

  19. Sirtori, C. et al. Resonant tunneling in quantum cascade lasers. IEEE J. Quantum Electron. 34, 1722–1729 (1998).

    Article  ADS  Google Scholar 

  20. Kumar, S. & Hu, Q. Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers. Phys. Rev. B 80, 245316 (2009).

    Article  ADS  Google Scholar 

  21. Nelander, R. & Wacker, A. Temperature dependence of the gain profile for terahertz quantum cascade lasers. Appl. Phys. Lett. 92, 081102 (2008).

    Article  ADS  Google Scholar 

  22. Callebaut, H. & Hu, Q. Importance of coherence for electron transport in terahertz quantum cascade lasers. J. Appl. Phys. 98, 104505 (2005).

    Article  ADS  Google Scholar 

  23. Kumar, S., Chan, C. W. I., Hu, Q. & Reno, J. L. Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation. Appl. Phys. Lett. 95, 141110 (2009).

    Article  ADS  Google Scholar 

  24. Faist, J. et al. Laser action by tuning the oscillator strength. Nature 387, 777–782 (1997).

    Article  ADS  Google Scholar 

  25. Gmachl, C. et al. Bidirectional semiconductor laser. Science 286, 749–752 (1999).

    Article  Google Scholar 

  26. Scamarcio, G. et al. High peak power (2.2 W) superlattice quantum cascade laser. Electron. Lett. 37, 295–296 (2001).

    Article  Google Scholar 

  27. Yamanishi, M., Fujita, K., Edamura, T. & Kan, H. Indirect pump scheme for quantum cascade lasers: Dynamics of electron-transport and very high T0-values. Opt. Express 16, 20748–20758 (2008).

    Article  ADS  Google Scholar 

  28. Franz, K. J. et al. High k-space lasing in a dual-wavelength quantum cascade laser. Nature Photon. 3, 50–54 (2009).

    Article  ADS  Google Scholar 

  29. Yasuda, H. et al. Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers. Appl. Phys. Lett. 94, 151109 (2009).

    Article  ADS  Google Scholar 

  30. Kumar, S., Hu, Q. & Reno, J. L. Conference on Lasers and Electro-Optics, OSA Technical Digest, paper CThH4, (2009), http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-CThH4.

  31. Amanti, M. I. et al. Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage. New J. Phys. 11, 125022 (2009).

    Article  ADS  Google Scholar 

  32. Belkin, M. A. et al. Terahertz quantum cascade lasers with copper metal–metal waveguides operating up to 178 K. Opt. Express 16, 3242–3248 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Aeronautics and Space Administration and the National Science Foundation. The work was carried out in part at the United States Department of Energy, Center for Integrated Nanotechnologies, and Sandia National Laboratories (Contract DE-AC04-94AL85000).

Author information

Authors and Affiliations

Authors

Contributions

S.K. designed the quantum cascade structure in consultation with Q.H., processed the devices and did some initial experiments. C.W.I.C. carried out detailed experiments and characterization. S.K., C.W.I.C. and Q.H. analysed the experimental data. J.L.R. was responsible for the crystal growth by molecular beam epitaxy. S.K. wrote the manuscript with assistance from all other authors. The project was supervised by Q.H.

Corresponding author

Correspondence to Sushil Kumar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Chan, C., Hu, Q. et al. A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB. Nature Phys 7, 166–171 (2011). https://doi.org/10.1038/nphys1846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing