Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Criticality and isostaticity in fibre networks

Abstract

Disordered fibre networks are the basis of many man-made and natural materials, including structural components of living cells and tissue. The mechanical stability of such networks relies on the bending resistance of the fibres, in contrast to rubbers, which are governed by entropic stretching of polymer segments. Although it is known that fibre networks exhibit collective bending deformations, a fundamental understanding of such deformations and their effects on network mechanics has remained elusive. Here we introduce a lattice-based model of fibrous networks with variable connectivity to elucidate the roles of single-fibre elasticity and network structure. These networks exhibit both a low-connectivity rigidity threshold governed by fibre-bending elasticity and a high-connectivity threshold governed by fibre-stretching elasticity. Whereas the former determines the true onset of network rigidity, we show that the latter exhibits rich zero-temperature critical behaviour, including a crossover between various mechanical regimes along with diverging strain fluctuations and a concomitant diverging correlation length.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibre networks arranged on lattices in 2D and 3D.
Figure 2: Mechanics and non-affine strain fluctuations.
Figure 3: Scaling analysis of the mechanics and anomalous elasticity.
Figure 4: Finite-size scaling.
Figure 5: Phase diagram.

Similar content being viewed by others

References

  1. Chawla, K. K. Fibrous Materials (Cambridge Univ. Press, 1998).

    Book  Google Scholar 

  2. Kabla, A. & Mahadevan, L. Nonlinear mechanics of soft fibrous networks. J. R. Soc. Interface 4, 99–106 (2007).

    Article  Google Scholar 

  3. Hough, L. A., Islam, M. F., Janmey, P. A. & Yodh, A. G. Viscoelasticity of single wall carbon nanotube suspensions. Phys. Rev. Lett. 93, 168102 (2004).

    Article  ADS  Google Scholar 

  4. Hall, L. J. et al. Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320, 504–507 (2008).

    Article  ADS  Google Scholar 

  5. Bausch, A. R. & Kroy, K. A bottom-up approach to cell mechanics. Nature Phys. 2, 231–238 (2006).

    Article  ADS  Google Scholar 

  6. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article  ADS  Google Scholar 

  7. Kasza, K. E. et al. The cell as a material. Curr. Opin. Cell Biol. 19, 101–107 (2007).

    Article  Google Scholar 

  8. Pedersen, J. A. & Swartz, M. A. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33, 1469–1490 (2005).

    Article  Google Scholar 

  9. Maxwell, J. C. On the calculation of the equilibrium and stiffness of frames. Phil. Mag. 27, 294–299 (1864).

    Article  Google Scholar 

  10. Thorpe, M. F. Continuous deformations in random networks. J. Non-Cryst. Solids 57, 355–370 (1983).

    Article  ADS  Google Scholar 

  11. Garboczi, E. J. & Thorpe, M. F. Effective-medium theory of percolation on central-force elastic networks. III. The superelastic problem. Phys. Rev. B 33, 3289–3294 (1986).

    Article  ADS  Google Scholar 

  12. Wyart, M., Liang, H., Kabla, A. & Mahadevan, L. Elasticity of floppy and stiff random networks. Phys. Rev. Lett. 101, 215501 (2008).

    Article  ADS  Google Scholar 

  13. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    Article  ADS  Google Scholar 

  14. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    Article  ADS  Google Scholar 

  15. Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007).

    Article  ADS  Google Scholar 

  16. Lieleg, O., Claessens, M. M. A. E., Heussinger, C., Frey, E. & Bausch, A. R. Mechanics of bundled semiflexible polymer networks. Phys. Rev. Lett. 99, 088102 (2007).

    Article  ADS  Google Scholar 

  17. Head, D. A., Levine, A. J. & MacKintosh, F. C. Deformation of cross-linked semiflexible polymer networks. Phys. Rev. Lett. 91, 108102 (2003).

    Article  ADS  Google Scholar 

  18. Wilhelm, J. & Frey, E. Elasticity of stiff polymer networks. Phys. Rev. Lett. 91, 108103 (2003).

    Article  ADS  Google Scholar 

  19. Onck, P. R., Koeman, T., van Dillen, T. & van der Giessen, E. Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95, 178102 (2005).

    Article  ADS  Google Scholar 

  20. Heussinger, C. & Frey, E. Floppy modes and nonaffine deformations in random fiber networks. Phys. Rev. Lett. 97, 105501 (2006).

    Article  ADS  Google Scholar 

  21. Buxton, G. A. & Clarke, N. Bending to stretching transition in disordered networks. Phys. Rev. Lett. 98, 238103 (2007).

    Article  ADS  Google Scholar 

  22. Huisman, E. M. & Lubensky, T. C. Internal stresses, normal modes, and nonaffinity in three-dimensional biopolymer networks. Phys. Rev. Lett. 106, 088301 (2011).

    Article  ADS  Google Scholar 

  23. Jacobs, D. J. & Thorpe, M. F. Generic rigidity percolation in two dimensions. Phys. Rev. E 53, 3682–3693 (1996).

    Article  ADS  Google Scholar 

  24. Feng, S. & Sen, P. N. Percolation on elastic networks: New exponent and threshold. Phys. Rev. Lett. 52, 216–219 (1984).

    Article  ADS  Google Scholar 

  25. Feng, S., Sen, P. N., Halperin, B. I. & Lobb, C. J. Percolation on two-dimensional elastic networks with rotationally invariant bond-bending forces. Phys. Rev. B 30, 5386–5389 (1984).

    Article  ADS  Google Scholar 

  26. Phillips, J. C. Topology of covalent non-crystalline solids II: Medium-range order in chalcogenide alloys and A–Si(Ge). J. Non-Cryst. Solids 43, 37–77 (1981).

    Article  ADS  Google Scholar 

  27. He, H. & Thorpe, M. F. Elastic properties of glasses. Phys. Rev. Lett. 54, 2107–2110 (1985).

    Article  ADS  Google Scholar 

  28. Liu, A. J. & Nagel, S. R. Nonlinear dynamics: Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  ADS  Google Scholar 

  29. O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003).

    Article  ADS  Google Scholar 

  30. Liu, A. J., Nagel, S. R., van Saarloos, W. & Wyart, M. in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (eds Berthier, L., Biroli, G., Bouchaud, J-P., Cipeletti, L. & van Saarloos, W.) (Oxford Univ.Press, 2010).

    Google Scholar 

  31. Schwartz, L. M., Feng, S., Thorpe, M. F. & Sen, P. N. Behavior of depleted elastic networks: Comparison of effective-medium and numerical calculations. Phys. Rev. B 32, 4607–4617 (1985).

    Article  ADS  Google Scholar 

  32. Sahimi, M. & Arbabi, S. Mechanics of disordered solids. II. Percolation on elastic networks with bond-bending forces. Phys. Rev. B 47, 703–712 (1993).

    Article  ADS  Google Scholar 

  33. Broedersz, C. P. & MacKintosh, F. C. Molecular motors stiffen non-affine semiflexible polymer networks. Soft Matter 7, 3186–3191 (2011).

    Article  ADS  Google Scholar 

  34. Zabolitzky, J. G., Bergman, D. J. & Stauffer, D. Precision calculation of elasticity for percolation. J. Stat. Phys. 44, 211–223 (1986).

    Article  ADS  Google Scholar 

  35. Arbabi, S. & Sahimi, M. Mechanics of disordered solids. I. Percolation on elastic networks with central forces. Phys. Rev. B 47, 695–702 (1993).

    Article  ADS  Google Scholar 

  36. Das, M., MacKintosh, F. C. & Levine, A. J. Effective medium theory of semiflexible filamentous networks. Phys. Rev. Lett. 99, 038101 (2007).

    Article  ADS  Google Scholar 

  37. Lax, M. Multiple scattering of waves. Rev. Mod. Phys. 23, 287–310 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  38. Elliott, R. J., Krumhansl, J. A. & Leath, P. L. The theory and properties of randomly disordered crystals and related physical systems. Rev. Mod. Phys. 46, 465–543 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  39. Soven, P. Contribution to the theory of disordered alloys. Phys. Rev. 178, 1136–1144 (1969).

    Article  ADS  Google Scholar 

  40. Mao, X., Xu, N. & Lubensky, T. C. Soft modes and elasticity of nearly isostatic lattices: Randomness and dissipation. Phys. Rev. Lett. 104, 085504 (2010).

    Article  ADS  Google Scholar 

  41. Feng, S., Thorpe, M. F. & Garboczi, E. Effective-medium theory of percolation on central-force elastic networks. Phys. Rev. B 31, 276–280 (1985).

    Article  ADS  Google Scholar 

  42. Straley, J. Critical phenomena in resistor networks. J. Phys. C 9, 783–795 (1976).

    Article  ADS  Google Scholar 

  43. Dykhne, A. M. Conductivity of a two-dimensional two-phase system. JETP 32, 63–65 (1971).

    ADS  Google Scholar 

  44. Efros, A. L. & Shklovskii, B. I. Critical behaviour of conductivity and dielectric constant near the metal–non-metal transition threshold. Phys. Status Solidi B 76, 475–485 (1976).

    Article  ADS  Google Scholar 

  45. Heussinger, C. & Frey, E. Stiff polymers, foams, and fiber networks. Phys. Rev. Lett. 96, 017802 (2006).

    Article  ADS  Google Scholar 

  46. DiDonna, B. A. & Lubensky, T. C. Nonaffine correlations in random elastic media. Phys. Rev. E 72, 066619 (2005).

    Article  ADS  Google Scholar 

  47. Liu, J., Koenderink, G. H., Kasza, K. E., MacKintosh, F. C. & Weitz, D. A. Visualizing the strain field in semiflexible polymer networks: Strain fluctuations and nonlinear rheology of f-actin gels. Phys. Rev. Lett. 98, 198304 (2007).

    Article  ADS  Google Scholar 

  48. Fisher, M. E. in Proc. School on Critical Phenomena, Stellenbosch, South Africa, 1982 Vol. 186 (ed. Hahne, F. J. W.) (Springer, 1983).

    Google Scholar 

  49. Chubynsky, M. V. & Thorpe, M. F. Algorithms for three-dimensional rigidity analysis and a first-order percolation transition. Phys. Rev. E 76, 041135 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF-DMR-0804900 (T.C.L. and X.M.) and in part by FOM/NWO (C.P.B. and F.C.M.). The authors thank M. Wyart, M. Das and L. Jawerth for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.P.B. and F.C.M. designed the simulation model, which was developed and executed by C.P.B.; X.M. and T.C.L. developed and executed the EMT. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Tom C. Lubensky or Frederick C. MacKintosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broedersz, C., Mao, X., Lubensky, T. et al. Criticality and isostaticity in fibre networks. Nature Phys 7, 983–988 (2011). https://doi.org/10.1038/nphys2127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing