Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A quantum spin transducer based on nanoelectromechanical resonator arrays

Abstract

Isolated electronic and nuclear spins in solids are at present being actively explored for potential quantum-computing applications. Spin degrees of freedom provide an excellent quantum memory, owing to their weak magnetic interactions with the environment. For the same reason, however, it is difficult to achieve controlled interactions of spins over distances larger than tens of nanometres. Here we propose a new realization of a quantum data bus for spin qubits where spins are coupled to the motion of magnetized mechanical resonators through magnetic-field gradients. Provided that the mechanical system is charged, the magnetic moments associated with spin qubits can be effectively amplified to enable a coherent spin–spin coupling over long distances through Coulomb forces. Our approach is applicable to a wide class of electronic spin qubits, which can be localized near magnetized tips and can be used for the implementation of hybrid quantum-computing architectures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electromechanical quantum transducer.
Figure 2: Spin–spin interactions.
Figure 3: Gate fidelity.
Figure 4: Spin-echo techniques.
Figure 5: Scalable quantum information processing.

Similar content being viewed by others

References

  1. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    Article  ADS  Google Scholar 

  2. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article  ADS  Google Scholar 

  3. Hänsel, W. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005).

    Article  ADS  Google Scholar 

  4. Maunz, P. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  Google Scholar 

  5. Jelezko, F. & Wrachtrup, J. Read-out of single spins by optical spectroscopy. J. Phys. Condens. Matter 16, R1089–R1104 (2004).

    Article  ADS  Google Scholar 

  6. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  ADS  Google Scholar 

  7. Hanson, R., Mendoza, F. M., Epstein, R. J. & Awschalom, D. D. Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006).

    Article  ADS  Google Scholar 

  8. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  9. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  10. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  Google Scholar 

  11. Tyryshkin, A. M. et al. Solid-state quantum memory using the P nuclear spin. Nature 455, 1085–1088 (2008).

    Article  ADS  Google Scholar 

  12. Tyryshkin, A. M., Lyon, S. A., Astashkin, A. V. & Raitsimring, A. M. Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003).

    Article  ADS  Google Scholar 

  13. Stegner, A. R. et al. Electrical detection of coherent 31P spin quantum states. Nature Phys. 2, 835–838 (2006).

    Article  ADS  Google Scholar 

  14. Harneit, W. Fullerene-based electron-spin quantum computer. Phys. Rev. A 65, 032322 (2002).

    Article  ADS  Google Scholar 

  15. Benjamin, S. C. et al. Towards a fullerene-based quantum computer. J. Phys. Condens. Matter 18, S867–S883 (2006).

    Article  Google Scholar 

  16. Morton, J. J. L. et al. Bang–bang control of fullerene qubits using ultrafast phase gates. Nature Phys. 2, 40–43 (2006).

    Article  ADS  Google Scholar 

  17. Churchill, H. O. H. et al. Relaxation and dephasing in a two-electron 13C nanotube double quantum dot. Phys. Rev. Lett. 102, 166802 (2009).

    Article  ADS  Google Scholar 

  18. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nature Phys. 3, 192–196 (2007).

    Article  ADS  Google Scholar 

  19. Vrijen, R. et al. Electron–spin-resonance transistors for quantum computing in silicon–germanium heterostructures. Phys. Rev. A 62, 012306 (2000).

    Article  ADS  Google Scholar 

  20. Zwanenburg, F. A., van Rijmenam, C. E. W. M., Fang, Y., Lieber, C. M. & Kouwenhoven, L. P. Spin states of the first four holes in a silicon nanowire quantum dot. Nano Lett. 9, 1071–1079 (2009).

    Article  ADS  Google Scholar 

  21. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  ADS  Google Scholar 

  22. Mamin, H. J. et al. Isotope-selective detection and imaging of organic nanolayers. Nano Lett. 9, 3020–3024 (2009).

    Article  ADS  Google Scholar 

  23. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    Article  ADS  Google Scholar 

  24. Gigan, S. et al. Self-cooling of a micro-mirror by radiation pressure. Nature 444, 67–70 (2006).

    Article  ADS  Google Scholar 

  25. Schliesser, A., Riviere, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008).

    Article  ADS  Google Scholar 

  26. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  27. Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).

    Article  ADS  Google Scholar 

  28. Rabl, P. et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302(R) (2009).

    Article  ADS  Google Scholar 

  29. Armour, A. D., Blencowe, M. P. & Schwab, K. C. Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. Phys. Rev. Lett. 88, 148301 (2002).

    Article  ADS  Google Scholar 

  30. Treutlein, P., Hunger, D., Camerer, S., Hänsch, T. W. & Reichel, J. Bose–Einstein condensate coupled to a nanomechanical resonator on an atom chip. Phys. Rev. Lett. 99, 140403 (2007).

    Article  ADS  Google Scholar 

  31. Tian, L. & Zoller, P. Coupled ion–nanomechanical systems. Phys. Rev. Lett. 93, 266403 (2004).

    Article  ADS  Google Scholar 

  32. Hensinger, W. K. et al. Ion trap transducers for quantum electromechanical oscillators. Phys. Rev. A 72, 041405 (2005).

    Article  ADS  Google Scholar 

  33. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  ADS  Google Scholar 

  34. Sorensen, A. & Molmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999).

    Article  ADS  Google Scholar 

  35. Molmer, K. & Sorensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

    Article  ADS  Google Scholar 

  36. Wunderlich, C., Figger, H., Meschede, D. & Zimmermann, C. Laser Physics at the Limit (Springer, 2002).

    Google Scholar 

  37. Garca-Ripoll, J. J., Zoller, P. & Cirac, J. I. Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003).

    Article  ADS  Google Scholar 

  38. Garca-Ripoll, J. J., Zoller, P. & Cirac, J. I. Coherent control of trapped ions using off-resonant lasers. Phys. Rev. A 71, 062309 (2005).

    Article  ADS  Google Scholar 

  39. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

    Article  ADS  Google Scholar 

  40. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article  ADS  Google Scholar 

  41. Dür, W. & Briegel, H. J. Entanglement purification for quantum computation. Phys. Rev. Lett. 90, 067901 (2003).

    Article  ADS  Google Scholar 

  42. Jiang, L., Taylor, J. M., Sorensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

    Article  ADS  Google Scholar 

  43. de Sousa, R. & Das Sarma, S. Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003).

    Article  ADS  Google Scholar 

  44. Coish, W. A. & Loss, D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).

    Article  ADS  Google Scholar 

  45. Maze, J. R., Taylor, J. M. & Lukin, M. D. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys. Rev. B 78, 094303 (2008).

    Article  ADS  Google Scholar 

  46. Zimmerli, G., Eiles, T. M., Kautz, R. L. & Martinis, J. M. Noise in the Coulomb blockade electrometer. Appl. Phys. Lett. 61, 237–239 (1992).

    Article  ADS  Google Scholar 

  47. Haeberlen, U. High Resolution NMR in Solids: Selective Averaging (Academic, 1976).

    Google Scholar 

  48. Uhrig, G. S. Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007).

    Article  ADS  Google Scholar 

  49. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  50. Garg, A., Onuchic, J. N. & Ambegaokar, V. Effect of friction on electron transfer in biomolecules. J. Chem. Phys. 83, 4491–4503 (1985).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussion with M. Aspelmeyer and K. Schwab. This work is supported by ITAMP, NSF, CUA, DARPA and the Packard Foundation. P.Z. acknowledges support by SFB FOQUS and EU Networks.

Author information

Authors and Affiliations

Authors

Contributions

P.R. carried out the theoretical analysis of the coupling scheme. All authors contributed to the initial ideas, discussions of the results and writing the manuscript.

Corresponding author

Correspondence to P. Rabl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabl, P., Kolkowitz, S., Koppens, F. et al. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Phys 6, 602–608 (2010). https://doi.org/10.1038/nphys1679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing