Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures

Abstract

In the spin Hall effect, a current passed through a spin–orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the diffusive transport regime. A central problem for experimentalists in studying the effect is the very small signals that result from the spin accumulation. Electrical measurements on metals have yielded reliable signatures of the spin Hall effect, but in semiconductors the spin accumulation could only be detected by optical techniques. Here we report experimental evidence for electrical manipulation and detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a non-local electrical measurement in nanoscale H-shaped structures built on high-mobility HgTe/(Hg, Cd)Te quantum wells. When the samples are tuned into the p-regime, we observe a large non-local resistance signal due to the ISHE, several orders of magnitude larger than in metals. In the n-regime, where the spin–orbit splitting is reduced, the signal is at least one order of magnitude smaller and vanishes for narrower quantum wells. We verify our experimental observations by quantum transport calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H-structure samples.
Figure 2: Local resistance data and carrier density of samples Q2197 and Q2198.
Figure 3: Non-local resistance data for samples Q2197 and Q2198.
Figure 4: Experiments on the non-inverted control sample Q2398.
Figure 5: Band structure calculation for sample Q2198.
Figure 6: Theoretical resistance signal for samples Q2197, Q2198 and Q2398.

Similar content being viewed by others

References

  1. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  ADS  Google Scholar 

  2. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  ADS  Google Scholar 

  3. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  Google Scholar 

  4. Hankiewicz, E. M. & Vignale, G. Coulomb corrections to the extrinsic spin-Hall effect of a two-dimensional electron gas. Phys. Rev. B 73, 115339 (2006).

    Article  ADS  Google Scholar 

  5. Engel, H-A., Rashba, E. I. & Halperin, B. I. Handbook of Magnetism and Advanced Magnetic Materials (John Wiley, 2007).

    Google Scholar 

  6. Murakami, S., Nagaosa, N. & Zhang, S-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  ADS  Google Scholar 

  7. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  ADS  Google Scholar 

  8. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  Google Scholar 

  9. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  ADS  Google Scholar 

  10. Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nature Phys. 1, 31–35 (2005).

    Article  ADS  Google Scholar 

  11. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  ADS  Google Scholar 

  12. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  ADS  Google Scholar 

  13. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    Article  ADS  Google Scholar 

  14. Seki, T. et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Matter. 7, 125–129 (2008).

    Article  ADS  Google Scholar 

  15. Weng, K., Chandrasekhar, N., Miniatura, C. & Englert, B-G. in Electron Transport in Nanosystems (eds Bonca, J. & Kruchinin, S.) 49–58 (Springer, 2008).

    Google Scholar 

  16. Hankiewicz, E. M., Molenkamp, L. W., Jungwirth, T. & Sinova, J. Manifestation of the spin Hall effect through charge-transport in the mesoscopic regime. Phys. Rev. B 70, 241301 (2004).

    Article  ADS  Google Scholar 

  17. Nikolić, B. K., Souma, S., Zârbo, L. & Sinova, J. Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures. Phys. Rev. Lett. 95, 046601 (2005).

    Article  ADS  Google Scholar 

  18. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  19. Gui, Y. et al. Giant spin–orbit splitting in a HgTe quantum well. Phys. Rev. B 70, 115328 (2004).

    Article  ADS  Google Scholar 

  20. Hinz, J. et al. Gate control of the giant Rashba effect in HgTe quantum wells. Semicond. Sci. Technol. 21, 501–506 (2006).

    Article  ADS  Google Scholar 

  21. Novik, E. et al. Band structure of semimagnetic HgMnTe quantum wells. Phys. Rev. B 72, 35321 (2005).

    Article  ADS  Google Scholar 

  22. Hankiewicz, E. M. et al. Charge Hall effect driven by spin-dependent chemical potential gradients and Onsager relations in mesoscopic systems. Phys. Rev. B 72, 155305 (2005).

    Article  ADS  Google Scholar 

  23. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article  ADS  Google Scholar 

  24. Zhou, B., Lu, H-Z., Chu, R-L., Shen, S-Q. & Niu, Q. Finite size effects on helical edge states in a quantum spin-Hall system. Phys. Rev. Lett. 101, 246807 (2008).

    Article  ADS  Google Scholar 

  25. Yang, W., Chang, K. & Zhang, S-C. Intrinsic spin Hall effect induced by quantum phase transition in HgCdTe quantum wells. Phys. Rev. Lett. 100, 056602 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Schneider and N. Eikenberg for assistance in the experiments, and C. Gould, S-C. Zhang and X-L. Qi for stimulating discussions. We gratefully acknowledge the financial support by the German–Israeli Foundation (I-881-138.7/2005), DFG under grants AS 327/2-1 and HA5893/1-1, ONR under grant ONR-N000140610122, NSF under grant DMR-0547875, and SWAN-NRI. We thank the Leibniz Rechenzentrum Münich for providing computer resources. J.S. is a Cottrell Scholar of the Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Device fabrication: C.B., A.R., M.K.; experiments and data analysis: C.B., A.R., M.K., H.B., L.W.M.; theory: E.G.N., E.M.H., W.H., J.S.; writing: C.B., H.B., E.M.H., J.S., L.W.M.; project planning: H.B., L.W.M.

Corresponding author

Correspondence to H. Buhmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 324 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüne, C., Roth, A., Novik, E. et al. Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures. Nature Phys 6, 448–454 (2010). https://doi.org/10.1038/nphys1655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1655

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing