Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mott physics and band topology in materials with strong spin–orbit interaction

Abstract

Recent theory and experiment have revealed that strong spin–orbit coupling can have marked qualitative effects on the band structure of weakly interacting solids, leading to a distinct phase of matter, the topological band insulator. We show that spin–orbit interaction also has quantitative and qualitative effects on the correlation-driven Mott insulator transition. Taking Ir-based pyrochlores as a specific example, we predict that for weak electron–electron interaction Ir electrons are in metallic and topological band insulator phases at weak and strong spin–orbit interaction, respectively. We show that by increasing the electron–electron interaction strength, the effects of spin–orbit coupling are enhanced. With increasing interactions, the topological band insulator is transformed into a ‘topological Mott insulator’ phase having gapless surface spin-only excitations. The proposed phase diagram also includes a region of gapless Mott insulator with a spinon Fermi surface, and a magnetically ordered state at still larger electron–electron interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram based on the slave-rotor approximation and strong coupling limit, as a function of Hubbard repulsion U and spin–orbit coupling λ (relative to hopping t).
Figure 2: Pyrochlore lattice and electron hopping.
Figure 3: Electronic band structure of Ir 5d electrons on the pyrochlore lattice at large spin–orbit coupling, .
Figure 4: Surface-state spectrum.

Similar content being viewed by others

References

  1. Kane, C. & Mele, E. Z(2) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  2. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  3. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  ADS  Google Scholar 

  4. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  5. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  6. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  ADS  Google Scholar 

  7. Chen, G. & Balents, L. Spin–orbit effects in Na4Ir3O8: A hyper-kagome lattice antiferromagnet. Phys. Rev. B 78, 094403 (2008).

    Article  ADS  Google Scholar 

  8. Tovar, M., Raman, K. S. & Shtengel, K. Dzyaloshinskii-Moriya interactions in valence-bond systems. Phys. Rev. B 79, 024405 (2009).

    Article  ADS  Google Scholar 

  9. Chen, G., Balents, L. & Schnyder, A. P. Spin-orbital singlet and quantum critical point on the diamond lattice: FeSc2S4 . Phys. Rev. Lett. 102, 096406 (2009).

    Article  ADS  Google Scholar 

  10. Kim, B. J. et al. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4 . Science 323, 1329–1332 (2009).

    Article  ADS  Google Scholar 

  11. Shitade, A. et al. Quantum spin Hall effect in a transition metal oxide Na2IrO3 . Phys. Rev. Lett. 102, 256403 (2009).

    Article  ADS  Google Scholar 

  12. Matsuhira, K. et al. Metal–insulator transition in pyrochlore iridates Ln2Ir2O7 (Ln=Nd, Sm, and Eu). J. Phys. Soc. Jpn 76, 043706 (2007).

    Article  ADS  Google Scholar 

  13. Okamoto, Y., Nohara, M., Aruga-Katori, H. & Takagi, H. Spin-liquid state in the S=1/2 hyperkagome antiferromagnet Na4Ir3O8 . Phys. Rev. Lett. 99, 137207 (2007).

    Article  ADS  Google Scholar 

  14. Fukazawa, H. & Maeno, Y. Filling control of the pyrochlore oxide Y2Ir2O7 . J. Phys. Soc. Jpn 71, 2578–2579 (2002).

    Article  ADS  Google Scholar 

  15. Nakatsuji, S. et al. Metallic spin-liquid behavior of the geometrically frustrated Kondo lattice Pr2Ir2O7 . Phys. Rev. Lett. 96, 087204 (2006).

    Article  ADS  Google Scholar 

  16. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Clarendon, 1975).

    Google Scholar 

  17. Jin, H., Kim, H., Jeong, H., Kim, C. H. & Yu, J. Mott insulating ground state and its proximity to spin–orbit insulators in Na2IrO3. Preprint at <http://arxiv.org/abs/0907.0743> (2009).

  18. Slater, J. & Koster, G. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    Article  ADS  Google Scholar 

  19. Fu, L. & Kane, C. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  20. Elhajal, M., Canals, B., Sunyer, R. & Lacroix, C. Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky-Moriya interactions. Phys. Rev. B 71, 094420 (2005).

    Article  ADS  Google Scholar 

  21. Florens, S. & Georges, A. Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions. Phys. Rev. B 70, 035114 (2004).

    Article  ADS  Google Scholar 

  22. Mizusaki, T. & Imada, M. Gapless quantum spin liquid, stripe, and antiferromagnetic phases in frustrated Hubbard models in two dimensions. Phys. Rev. B 74, 014421 (2006).

    Article  ADS  Google Scholar 

  23. Motrunich, O. Variational study of triangular lattice spin-1/2 model with ring exchanges and spin liquid state in κ-(ET)2Cu2(CN)3 . Phys. Rev. B 72, 045105 (2005).

    Article  ADS  Google Scholar 

  24. Sahebsara, P. & Sénéchal, D. Hubbard model on the triangular lattice: Spiral order and spin liquid. Phys. Rev. Lett. 100, 136402 (2008).

    Article  ADS  Google Scholar 

  25. Raghu, S., Qi, X.-L., Honerkamp, C. & Zhang, S.-C. Topological Mott insulators. Phys. Rev. Lett. 100, 156401 (2008).

    Article  ADS  Google Scholar 

  26. Young, M. W., Lee, S.-S. & Kallin, C. Fractionalized quantum spin Hall effect. Phys. Rev. B 78, 125316 (2008).

    Article  ADS  Google Scholar 

  27. Qi, X., Li, R., Zang, J. & Zhang, S. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  28. Qi, X., Hughes, T. & Zhang, S. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  29. Essin, A., Moore, J. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article  ADS  Google Scholar 

  30. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    Article  ADS  Google Scholar 

  31. Podolsky, D., Paramekanti, A., Kim, Y. B. & Senthil, T. Mott transition between a spin-liquid insulator and a metal in three dimensions. Phys. Rev. Lett. 102, 186401 (2009).

    Article  ADS  Google Scholar 

  32. Ioffe, L. B. & Larkin, A. I. Gapless fermions and gauge fields in dielectrics. Phys. Rev. B 39, 8988–8999 (1989).

    Article  ADS  Google Scholar 

  33. Yamashita, S. et al. Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt. Nature Phys. 4, 459–462 (2008).

    Article  ADS  Google Scholar 

  34. Lawler, M. J., Paramekanti, A., Kim, Y. B. & Balents, L. Gapless spin liquids on the three-dimensional hyperkagome lattice of Na4Ir3O8 . Phys. Rev. Lett. 101, 197202 (2008).

    Article  ADS  Google Scholar 

  35. Zhou, Y., Lee, P. A., Ng, T.-K. & Zhang, F.-C. Na4Ir3O8 as a 3D spin liquid with fermionic spinons. Phys. Rev. Lett. 101, 197201 (2008).

    Article  ADS  Google Scholar 

  36. Senthil, T. Theory of a continuous Mott transition in two dimensions. Phys. Rev. B 78, 045109 (2008).

    Article  ADS  Google Scholar 

  37. Kyung, B. & Tremblay, A.-M. S. Mott transition, antiferromagnetism, and d-wave superconductivity in two-dimensional organic conductors. Phys. Rev. Lett. 97, 046402 (2006).

    Article  ADS  Google Scholar 

  38. Morita, H., Watanabe, S. & Imada, M. Nonmagnetic insulating states near the Mott transitions on lattices with geometrical frustration and implications for κ-(ET)2Cu2(CN)3 . J. Phys. Soc. Jpn 71, 2109–2112 (2002).

    Article  ADS  Google Scholar 

  39. Lee, H. & Monien, H. Mott transition in the Hubbard model on the hyper-kagome lattice. Preprint at <http://arxiv.org/abs/0903.3005> (2009).

  40. Yoshikawa, T. & Ogata, M. Role of frustration and dimensionality in the Hubbard model on the stacked square lattice: Variational cluster approach. Phys. Rev. B 79, 144429 (2009).

    Article  ADS  Google Scholar 

  41. Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal–semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).

    Article  ADS  Google Scholar 

  42. Halperin, B. I., Lubensky, T. C. & Ma, S.-K. First-order phase transitions in superconductors and smectic-A liquid crystals. Phys. Rev. Lett. 32, 292–295 (1974).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DOE through Basic Energy Sciences grants DE-FG02-08ER46524 (L.B.) and DEFG02-07ER46452 (D.P.). The research facilities at the KITP were supported by the National Science Foundation grant NSF PHY-0551164.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Dmytro Pesin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesin, D., Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nature Phys 6, 376–381 (2010). https://doi.org/10.1038/nphys1606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1606

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing