Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Turbulent inward pinch of plasma confined by a levitated dipole magnet

Abstract

The rearrangement of plasma as a result of turbulence is among the most important processes that occur in planetary magnetospheres and in experiments used for fusion energy research. Remarkably, fluctuations that occur in active magnetospheres drive particles inward and create centrally peaked profiles. Until now, the strong peaking seen in space has been undetectable in the laboratory because the loss of particles along the magnetic field is faster than the net driven flow across the magnetic field. Here, we report the first laboratory measurements in which a strong superconducting magnet is levitated and used to confine high-temperature plasma in a configuration that resembles planetary magnetospheres. Levitation eliminates field-aligned particle loss, and the central plasma density increases markedly. The build-up of density characterizes a sustained turbulent pinch and is equal to the rate predicted from measured electric-field fluctuations. Our observations show that dynamic principles describing magnetospheric plasma are relevant to plasma confined by a levitated dipole.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic geometry of the superconducting dipole and photograph of lifting apparatus when inserted and withdrawn.
Figure 2: Comparison of two nearly identical plasma discharges produced with a supported and levitated dipole magnet.
Figure 3: Measurements using the four-channel interferometer array show that levitation results in a highly peaked plasma density profile.
Figure 4: Measurement of the time required to establish the centrally peaked profile is used to determine the rate of the inward particle pinch.

Similar content being viewed by others

References

  1. Falthammar, C.-G. Effects of time dependent electric fields on geomagnetically trapped radiation. J. Geophys. Res. 70, 2503–2516 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  2. Birmingham, T. Convection electric fields and diffusion of trapped magnetospheric radiation. J. Geophys. Res. 74, 2169–2181 (1969).

    Article  ADS  Google Scholar 

  3. Schulz, M. & Lanzerotti, L. J. Particle Diffusion in the Radiation Belts (Springer, 1974).

    Book  Google Scholar 

  4. Lyon, J. G. The solar wind-magnetosphere-ionosphere system. Science 288, 1987–1991 (2000).

    Article  ADS  Google Scholar 

  5. Northrop, T. & Teller, E. Stability of the adiabatic motion of charged particles in the Earths field. Phys. Rev. 117, 215–225 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  6. Rosenbluth, M. N. & Longmire, C. L. Stability of plasmas confined by magnetic fields. Ann. Phys. 1, 120–140 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  7. Frank, L. A. On the extraterrestrial ring current during geomagnetic storms. J. Geophys. Res. 72, 3753–3767 (1967).

    Article  ADS  Google Scholar 

  8. Lyons, L. R. & Williams, D. J. The storm and poststorm evolution of energetic (35–560 keV) radiation belt electron distributions. J. Geophys. Res. 80, 3985–3994 (1975).

    Article  ADS  Google Scholar 

  9. Lyons, L. R. & Williams, D. J. Storm-associated variations of equatorially mirroring ring current protons, 1–800 keV, at constant first adiabatic invariant. J. Geophys. Res. 81, 216–220 (1976).

    Article  ADS  Google Scholar 

  10. Koepke, M. Interrelated laboratory and space plasma experiments. Rev. Geophys. 46, 1–43 (2008).

    Google Scholar 

  11. Warren, H. & Mauel, M. E. Observation of chaotic particle-transport induced by drift-resonant fluctuations in a magnetic dipole field. Phys. Rev. Lett. 74,1351–1354 (1995).

    Article  ADS  Google Scholar 

  12. Levitt, B., Maslovsky, D. & Mauel, M. E. Observation of centrifugally driven interchange instabilities in a plasma confined by a magnetic dipole. Phys. Rev. Lett. 94, 175002 (2005).

    Article  ADS  Google Scholar 

  13. Garbet, X. et al. Turbulent particle transport in magnetized plasmas. Phys. Rev. Lett. 91, 035001 (2003).

    Article  ADS  Google Scholar 

  14. Hoang, G. T. et al. Parametric dependence of turbulent particle transport in tore supra plasmas. Phys. Rev. Lett. 93, 135003 (2004).

    Article  ADS  Google Scholar 

  15. Baker, D. A perturbative solution of the drift kinetic equation yields pinch type convective terms in the particle and energy fluxes for strong electrostatic turbulence. Phys. Plasmas 11, 992–996 (2004).

    Article  ADS  Google Scholar 

  16. Bourdelle, C. Turbulent particle transport in magnetized fusion plasma. Plasma Phys. Control. Fusion 47, A317–A326 (2005).

    Article  ADS  Google Scholar 

  17. Weiland, J., Eriksson, A., Nordman, H. & Zagorodny, A. Progress on anomalous transport in tokamaks, drift waves and nonlinear structures. Plasma Phys. Control. Fusion 49, A45–A57 (2007).

    Article  ADS  Google Scholar 

  18. Burch, J. L. et al. Views of Earth’s Magnetosphere with the IMAGE Satellite. Science 291, 619–624 (2001).

    Article  ADS  Google Scholar 

  19. Russell, C. T. The dynamics of planetary magnetospheres. Planet. Space Sci. 49, 1005–1030 (2001).

    Article  ADS  Google Scholar 

  20. Yamada, T. et al. Anatomy of plasma turbulence. Nature Phys. 4, 721–725 (2008).

    Article  ADS  Google Scholar 

  21. Furth, H. P. Magnetic confinement fusion. Science 249, 1522–1527 (1990).

    Article  ADS  Google Scholar 

  22. Boxer, A. C., Garnier, D. T. & Mauel, M. E. Multichannel microwave interferometer for the levitated dipole experiment. Rev. Sci. Instrum. 80, 043502 (2009).

    Article  ADS  Google Scholar 

  23. Wolf, R. A., Spiro, R., Sazykin, S. & Toffoletto, F. How the Earth’s inner magnetosphere works: an evolving picture. J. Atmos. Solar Terr. Phys. 69, 288–302 (2007).

    Article  ADS  Google Scholar 

  24. Melrose, D. B. Rotational effects in the magnetosphere of Jupiter. Planet. Space Sci. 15, 381–393 (1967).

    Article  ADS  Google Scholar 

  25. Garnier, D. T. et al. Production and study of high-beta plasma confined by a superconducting dipole magnet. Phys. Plasma 13, 056111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  26. Hasegawa, A. A dipole field fusion reactor. Comments Plasma Phys. Control. Fusion 11, 147–151 (1987).

    Google Scholar 

  27. Hasegawa, A., Chen, L. & Mauel, M. E. A D-3He fusion-reactor based on a dipole magnetic-field. Nucl. Fusion 30, 2405–2413 (1990).

    Article  Google Scholar 

  28. Hoffert, M. et al. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 298, 981–987 (2002).

    Article  ADS  Google Scholar 

  29. Kesner, J., Garnier, D. T., Hansen, A., Mauel, M. E. & Bromberg, L. Helium catalysed D–D fusion in a levitated dipole. Nucl. Fusion 44, 193–203 (2004).

    Article  ADS  Google Scholar 

  30. Pastukhov, V. & Chudin, N. Self-consistent turbulent convection in a magnetized plasma. JETP Lett. 82, 356–365 (2005).

    Article  ADS  Google Scholar 

  31. Kouznetsov, A., Freidberg, J. P. & Kesner, J. Quasilinear theory of interchange modes in a closed field line configuration. Phys. Plasmas 14, 102501 (2007).

    Article  ADS  Google Scholar 

  32. Kesner, J. & Garnier, D. Convective cell formation in a levitated dipole. Phys. Plasmas 7, 2733–2737 (2000).

    Article  ADS  Google Scholar 

  33. Garnier, D. T. et al. Design and initial operation of the LDX facility. Fusion Eng. Des. 81,2371–2380 (2006).

    Google Scholar 

  34. Zhukovsky, Z. et al. First integrated test of the superconducting magnet systems for the levitated dipole experiment (LDX). Fusion Eng. Des. 75, 29–32 (2005).

    Article  Google Scholar 

  35. Stix, T. H. Waves in Plasmas (American Institute of Physics, 1992).

    Google Scholar 

  36. Hansen, A. K. et al. Varying electron cyclotron resonance heating on the Levitated Dipole Experiment. J. Fusion Energy 26, 57–60 (2007).

    Article  ADS  Google Scholar 

  37. Ortiz, E. E. et al. Effects of the hot electron interchange instability on plasma confined in a dipolar magnetic field. J. Fusion Energy 26, 139–144 (2007).

    Article  ADS  Google Scholar 

  38. Boxer, A. C. Density Profiles of Plasmas Confined by the Field of a Levitating, Dipole Magnet, Doctoral Dissertation (MIT, 2008).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical expertise of R. Lations, P. Michael, J. Minervini, D. Strahan and A. Zhukovsky that has been required for the design and successful operation of the LDX superconducting magnets. LDX is a joint research project of Columbia University and the Massachusetts Institute of Technology and is supported by the USDOE Office of Fusion Energy Sciences with Grants DE-FG02-98ER54458 and DE-FG02-98ER54459.

Author information

Authors and Affiliations

Authors

Contributions

A.B. constructed the interferometer array and parameterized the density profile. R.B. constructed and installed the probe array. J.E. installed and analysed optical measurements. P.W. installed and calibrated the radiometers. D.G. designed and implemented the dipole levitation system and supervised operation of the experimental facility. M.E.M. noted the time-evolution of the inward particle pinch, modelled the relationship between edge fluctuations and diffusion and drafted the article. All authors participated in the planning and execution of experiments, discussed the experimental results and commented on the manuscript.

Corresponding author

Correspondence to M. E. Mauel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1007 kb)

Supplementary Information

Supplementary Information (MP4 10550 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boxer, A., Bergmann, R., Ellsworth, J. et al. Turbulent inward pinch of plasma confined by a levitated dipole magnet. Nature Phys 6, 207–212 (2010). https://doi.org/10.1038/nphys1510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing