Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attosecond imaging of molecular electronic wavepackets

Abstract

A strong laser field may tunnel ionize a molecule from several orbitals simultaneously, forming an attosecond electron–hole wavepacket. Both temporal and spatial information on this wavepacket can be obtained through the coherent soft X-ray emission resulting from the laser-driven recollision of the liberated electron with the core. By characterizing the emission from aligned N2 molecules, we demonstrate the attosecond contributions of the two highest occupied molecular orbitals. We determine conditions where they are disentangled in the real and imaginary parts of the emission dipole moment. This allows us to carry out a tomographic reconstruction of both orbitals with angstrom spatial resolution. Their coherent superposition provides experimental images of the attosecond wavepacket created in the ionization process. Our results open the prospect of imaging ultrafast intramolecular dynamics combining attosecond and angstrom resolutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Attosecond emission of aligned N2 molecules.
Figure 2: Experimental recombination dipole for N2 molecules.
Figure 3: Phase of the harmonic emission.
Figure 4: Orbital tomographic reconstructions.
Figure 5: Reconstructions of the dynamic hole.

Similar content being viewed by others

References

  1. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    Article  ADS  Google Scholar 

  2. Eckle, P. et al. Attosecond ionization and tunnelling delay time measurements in helium. Science 322, 1525–1529 (2008).

    Article  ADS  Google Scholar 

  3. Niikura, H. et al. Probing molecular dynamics with attosecond resolution using correlated wavepacket pairs. Nature 421, 826–829 (2003).

    Article  ADS  Google Scholar 

  4. Mauritsson, J. et al. Coherent electron scattering captured by an attosecond quantum stroboscope. Phys. Rev. Lett. 100, 073003 (2008).

    Article  ADS  Google Scholar 

  5. Mairesse, Y. et al. Attosecond synchronization of high harmonic soft X-ray. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  6. Sola, I. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Phys. 2, 319–322 (2006).

    Article  ADS  Google Scholar 

  7. Dudovich, N. L. et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

    Article  ADS  Google Scholar 

  8. Cavallieri, A. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article  ADS  Google Scholar 

  9. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article  ADS  Google Scholar 

  10. Fohlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).

    Article  ADS  Google Scholar 

  11. Haessler, S. et al. Phase-resolved attosecond near-threshold photoionization of molecular nitrogen. Phys. Rev. A 80, 011404 (2009).

    Article  ADS  Google Scholar 

  12. Nakamura, H. Nonadiabatic Transitions. Concepts, Basic Theories and Applications (World Scientific Publishing, 2002).

    Book  Google Scholar 

  13. Breidbach, J. & Cederbaum, L. S. Universal attosecond response to the removal of an electron. Phys. Rev. Lett. 94, 033901 (2005).

    Article  ADS  Google Scholar 

  14. Hu, S. X. & Collins, L. A. Attosecond pump probe: exploring ultrafast electron motion inside an atom. Phys. Rev. Lett. 96, 073004 (2006).

    Article  ADS  Google Scholar 

  15. Remacle, F. & Levine, R. D. An electronic time scale in chemistry. Proc. Natl Acad. Sci. USA 103, 6793–6798 (2006).

    Article  ADS  Google Scholar 

  16. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  17. Smirnova, O., Patchkovskii, S., Mairesse, Y., Dudovich, N. & Ivanov, M. Y. Strong-field control and spectroscopy of attosecond electron–hole dynamics in molecules. Proc. Natl Acad. Sci. USA 106, 16556–16561 (2009).

    Article  ADS  Google Scholar 

  18. Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article  ADS  Google Scholar 

  19. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  20. Krausz, F. & Ivanov, M. Y. Attosecond physics. Rev. Mod. Phys. 81, 163–245 (2009).

    Article  ADS  Google Scholar 

  21. Baker, S. et al. Dynamic two-centre interference in high-order harmonic generation from molecules with attosecond nuclear motion. Phys. Rev. Lett. 101, 053901 (2008).

    Article  ADS  Google Scholar 

  22. Li, W. et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008).

    Article  ADS  Google Scholar 

  23. Boutu, W. et al. Coherent control of attosecond emission from aligned molecules. Nature Phys. 4, 545–549 (2008).

    Article  Google Scholar 

  24. Lein, M. Molecular imaging using recolliding electrons. J. Phys. B 40, R135–R173 (2007).

    Article  ADS  Google Scholar 

  25. Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470–474 (2005).

    Article  ADS  Google Scholar 

  26. Vozzi, C. et al. Controlling two-centre interference in molecular high harmonic generation. Phys. Rev. Lett. 95, 153902 (2005).

    Article  ADS  Google Scholar 

  27. Wagner, N. et al. Extracting the phase of high-order harmonic emission from a molecule using transient alignment in mixed samples. Phys. Rev. A 73, 061403 (2007).

    Article  ADS  Google Scholar 

  28. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  29. Schwarz, W. H. E. Measuring orbitals: Provocation or reality? Angew. Chem. 45, 1508–1517 (2006).

    Article  Google Scholar 

  30. Walters, Z. B., Tonzani, S. & Greene, C. H. Limits of the plane wave approximation in the measurement of molecular properties. J. Phys. Chem. 112, 9439–9447 (2008).

    Article  Google Scholar 

  31. van der Zwan, E., Chirila, C. C. & Lein, M. Molecular orbital tomography using short laser pulses. Phys. Rev. A 78, 033410 (2008).

    Article  ADS  Google Scholar 

  32. Le, V.-H., Le, A.-T., Xie, R.-H. & Lin, C. D. Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation. Phys. Rev. A 76, 013413 (2007).

    Article  ADS  Google Scholar 

  33. Torres, R. & Marangos, J. P. Mapping of orbital structure from high harmonic generation through the molecular dipole moment. J. Mod. Opt. 54, 1883–1899 (2007).

    Article  ADS  Google Scholar 

  34. Gibson, G. N. & Biegert, J. Influence of orbital symmetry on high-order-harmonic generation and quantum tomography. Phys. Rev. A 78, 033423 (2008).

    Article  ADS  Google Scholar 

  35. McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. & Gühr, M. High harmonic generation from multiple orbitals in N2 . Science 322, 1232–1235 (2008).

    Article  ADS  Google Scholar 

  36. Lewenstein, M., Balcou, Ph., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  37. Bransden, B. H. & Joachain, C. J. Physics of Atoms and Molecules (Pearson Education, 2003).

    Google Scholar 

  38. Lofthus, A. & Krupenie, P. H. Spectrum of molecular nitrogen. J. Phys. Chem. Ref. Data 6, 113–307 (1977).

    Article  ADS  Google Scholar 

  39. Tong, X. M., Zhao, Z. X. & Lin, C. D. Theory of molecular tunnelling ionization. Phys. Rev. A 66, 033402 (2002).

    Article  ADS  Google Scholar 

  40. Pavicic, D., Lee, K., Rayner, D. M., Corkum, P. B. & Villeneuve, D. M. Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields. Phys. Rev. Lett. 98, 243001 (2007).

    Article  ADS  Google Scholar 

  41. Kanai, T., Takahashi, E. J., Nabekawa, Y. & Midorikawa, K. Destructive interference during high harmonic generation in mixed gases. Phys. Rev. Lett. 98, 153904 (2007).

    Article  ADS  Google Scholar 

  42. Le, A.T., Lucchese, R. R., Tonzani, S., Morishita, T. & Lin, C. D. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

    Article  ADS  Google Scholar 

  43. Shafir, D., Mairesse, Y., Villeneuve, D. M., Corkum, P. B. & Dudovitch, N. Atomic wavefunctions probed through strong-field light–matter interaction. Nature Phys. 5, 412–416 (2009).

    Article  ADS  Google Scholar 

  44. Mairesse, Y. et al. Electron wavepacket control with elliptically polarized laser light in high harmonic generation from aligned molecules. New J. Phys. 10, 025015 (2008).

    Article  ADS  Google Scholar 

  45. Schmidt, M. W. et al. General atomic and molecular electronic-structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    Article  Google Scholar 

  46. Smirnova, O. A., Moritzen, S., Patchkovskii, S. & Ivanov, M. Y. Coulomb-laser coupling in laser-assisted photoionization and molecular tomography. J. Phys. B 40, F197–F206 (2007).

    Article  ADS  Google Scholar 

  47. Jordan, G. & Scrinzi, A. Core-polarization effects in molecular high harmonic generation. New J. Phys. 10, 025035 (2008).

    Article  ADS  Google Scholar 

  48. Patchkovskii, S., Zhao, Z., Brabec, T. & Villeneuve, D. M. High harmonic generation and molecular orbital tomography in multielectron systems: Beyond the single active electron approximation. Phys. Rev. Lett. 97, 123003 (2006).

    Article  ADS  Google Scholar 

  49. Santra, R. & Gordon, A. Three-step model for high-harmonic generation in many-electron systems. Phys. Rev. Lett. 96, 073906 (2006).

    Article  ADS  Google Scholar 

  50. Balcou, P., Salières, P., L’Huillier, A. & Lewenstein, M. Generalized phase-matching conditions for high harmonics: The role of field-gradient forces. Phys. Rev. A 55, 3204–3210 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank O. Smirnova, M. Ivanov and Y. Mairesse for fruitful discussions. Financial support from the LASERLAB2 programme and from the ANR-09-BLAN-0031-01 ATTO-WAVE is acknowledged. Parts of the computations have been carried out at the Institut du Développement et des Ressources en Informatique Scientifique IDRIS.

Author information

Authors and Affiliations

Authors

Contributions

P.S. with B.C. planned the project. W.B., P.B., B.C. and P.S. designed and installed the experiment. S.H. with assistance from W.B., P.B. and P.S. carried out the measurements. S.H. and J.C. with assistance from W.B.,T.R., Z.D. and P.S. analysed the data. J.C., C.G.-T., T.A., A.M. and R.T. carried out the calculations. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to P. Salières.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 895 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haessler, S., Caillat, J., Boutu, W. et al. Attosecond imaging of molecular electronic wavepackets. Nature Phys 6, 200–206 (2010). https://doi.org/10.1038/nphys1511

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1511

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing