Hysteretic magnetoresistance and thermal bistability in a magnetic two-dimensional hole system

Journal name:
Nature Physics
Year published:
Published online

Colossal negative magnetoresistance and the associated field-inducedinsulator-to-metal transition—the most characteristic features of magnetic semiconductors—are observed in n-type rare-earth oxides1 and chalcogenides2, p-type manganites3 and n-type4, 5 and p-type diluted magnetic semiconductors4, 6, as well as in quantum wells of n-type diluted magnetic semiconductors7, 8, 9. Here, we report on magnetotransport studies of Mn-modulation-doped InAs quantum wells, which reveal an insulator-to-metal transition that is driven by a magnetic field and dependent on bias voltage, with abrupt and hysteretic changes of resistance over several orders of magnitude. These phenomena coexist with the quantized Hall effect in high magnetic fields. We show that the exchange coupling between a hole and the parent Mn acceptor produces a magnetic anisotropy barrier that shifts the spin relaxation time of the bound hole to a 100s range in compressively strained quantum wells. This bistability of the individual Mn acceptors explains the hysteretic behaviour while opening prospects for information storing and processing. At high bias voltage another bistability, caused by the overheating of electrons10, gives rise to abrupt resistance jumps.

At a glance


  1. Results of four-terminal magnetotransport measurements and sample architectures.
    Figure 1: Results of four-terminal magnetotransport measurements and sample architectures.

    a,b Longitudinal resistance (red) and Hall resistance (black) at 1.6K for inverted (a) and normal (b) modulation-doped QW structures showing well-defined Shubnikov–de Haas oscillations and Hall plateaus. In contrast to the normal-doped QW structure (b), the low-field resistivity increases dramatically for the structure with an inverted doping layer (a), indicating strong hole localization. Insets, Schematic layer sequences of the inverted and normal Mn modulation-doped QW structures. The QW consists of a strain-relaxed InGaAs layer with an asymmetrically embedded strained InAs channel.

  2. Temperature dependence of longitudinal resistance of the inversely doped structure in high B fields.
    Figure 2: Temperature dependence of longitudinal resistance of the inversely doped structure in high B fields.

    The longitudinal resistance Rxx along the directions shows well-developed Shubnikov–de Haas oscillations with vanishing resistance at filling factor ν=1. At low B the system undergoes a quantum Hall insulator transition with a dramatic increase of Rxx for all temperatures. The Hall resistance is shown for temperature T=30mK. Inset, Temperature dependence of the zero-field resistance (Ubias=0.5V) at various gate voltages, demonstrating the tunability from strongly to weakly localized with increasing carrier density.

  3. Magnetic-field-driven hole delocalization in the inverted doped structure.
    Figure 3: Magnetic-field-driven hole delocalization in the inverted doped structure.

    af, Two-terminal resistance of the inverted structure—sample A (ad); sample B (e); computed (f). a,b, Magnetoresistance showing temperature-dependent hystereses and abrupt resistance drops for Ubias=0.01V (a) and Ubias=0.5V (b); Rmax=1010 (a) and Rmax=1012 (b) denotes an upper limit of the experimental set-up. c, Magnetoresistance at different carrier densities varied by the top-gate voltage at T=170mK. d, Current–voltage characteristics at T=40mK for selected values of perpendicular magnetic field (sweep direction marked by an arrow) showing highly nonlinear and linear behaviour at low and high magnetic fields, respectively. The inset shows the magnitude of the total magnetic field corresponding to the abrupt resistance decrease, Bjump (black), and the normal component of Bz (red) as a function of the angle between the magnetic-field direction and the film normal at 40mK. e, Minor loops for sample B at 400mK, documenting enhanced relaxation times. Upward B-field sweeps were stopped at B=0.31T. Then, after different waiting times indicated in the figure, the magnetic field was swept down. Open black squares show a full up-sweep (after complete relaxation). f, Computed resistance as a function of the magnetic field at various substrate temperatures for L=0.9mm and Ubias=0.11V for sample A. Positions of resistance jumps are marked by arrows.


  1. Shapira, Y., Foner, S., Aggarwal, R. L. & Reed, T. B. EuO. II. Dependence of the insulator–metal transition on magnetic order. Phys. Rev. B 8, 23162326 (1973).
  2. von Molnar, S., Briggs, A., Flouquet, J. & Remenyi, G. Electron localization in a magnetic semiconductor: Gd3−xvxS4 . Phys. Rev. Lett. 51, 706709 (1983).
  3. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 344, 1153 (2001).
  4. Wojtowicz, T., Dietl, T., Sawicki, M., Plesiewicz, W. & Jaroszyński, J. Metal–insulator transition in semimagnetic semiconductors. Phys. Rev. Lett. 56, 24192422 (1986).
  5. Terry, I., Penney, T., von Molnár, S. & Becla, P. Low-temperature transport properties of Cd0.91Mn0.09Te:In and evidence of a magnetic hard gap in the density of states. Phys. Rev. Lett. 69, 18001803 (1992).
  6. Oiwa, A. et al. Giant negative magnetoresistance of (Ga,Mn)As/GaAs in the vicinity of a metal–insulator transition. Phys. Status Solidi 205, 167171 (1998).
  7. Smorchkova, I. P., Samarth, N., Kikkawa, J. M. & Awschalom, D. D. Spin transport and localization in a magnetic two-dimensional electron gas. Phys. Rev. Lett. 78, 35713574 (1997).
  8. Smorchkova, I. P., Samarth, N., Kikkawa, J. M. & Awschalom, D. D. Giant magnetoresistance and quantum phase transitions in strongly localized magnetic two dimensional electron gases. Phys. Rev. B 58, R4238R4241 (1998).
  9. Jaroszyński, J. et al. Intermediate phase at the metal–insulator boundary in a magnetically doped two-dimensional electron system. Phys. Rev. B 76, 045322 (2007).
  10. Altshuler, B. L., Kravtsov, V. E., Lerner, I. V. & Aleiner, I. L. Jumps in current–voltage characteristics in disordered films. Phys. Rev. Lett. 102, 176803 (2009).
  11. Wurstbauer, U. et al. Coexistence of ferromagnetism and quantum Hall-effect in Mn modulation-doped two-dimensional hole system. J. Cryst. Growth 311, 21602162 (2009).
  12. Ohno, H., Munekata, H., Penney, T., von Molnár, S. & Chang, L.L. Magnetotransport properties of p-type (In,Mn)As diluted magnetic IIIV semiconductors. Phys. Rev. Lett. 68, 26642667 (1992).
  13. Bhattacharjee, A. K. & Benoit à la Guillaume, C. Model for the Mn acceptor in GaAs. Solid State Commun. 113, 1721 (2000).
  14. Boukari, H. et al. Light and electric field control of ferromagnetism in magnetic quantum structures. Phys. Rev. Lett. 88, 207204 (2002).
  15. Wurstbauer, U. & Wegscheider, W. Magnetic ordering effects in a Mn-modulation-doped high mobility two-dimensional hole system. Phys. Rev. B 79, 155444 (2009).
  16. Dietl, T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J. Phys. Soc. Jpn 77, 031005 (2008).
  17. Pappert, K. et al. Magnetization-switched metal–insulator transition in a (Ga,Mn)As tunnel device. Phys. Rev. Lett. 97, 186402 (2006).
  18. Rupprecht, B. et al. Magnetism in a Mn modulation-doped InAs/InGaAs heterostructure with a two-dimensional hole system. J. Appl. Phys. 107, 093711 (2010).
  19. Sheu, B. L. et al. Onset of ferromagnetism in low-doped Ga1−xMnxAs. Phys. Rev. Lett. 99, 227205 (2007).
  20. Myers, R. C. et al. Zero-field optical manipulation of magnetic ions in semiconductors. Nature Mater. 7, 203208 (2008).
  21. Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441444 (2007).
  22. Heiss, D. et al. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306(R) (2007).
  23. Dietl, T., Peyla, P., Grieshaber, W. & Merle d’Aubigné, Y. Dynamics of spin organization in diluted magnetic semiconductors. Phys. Rev. Lett. 74, 474477 (1995).
  24. Goryca, M. et al. Magnetization dynamics down to a zero field in dilute (Cd,Mn)Te quantum wells. Phys. Rev. Lett. 102, 046408 (2009).
  25. Giraud, R., Wernsdorfer, W., Tkachuk, A. M., Mailly, D. & Barbara, B. Nuclear spin driven quantum relaxation in LiY0.998Ho0.002F4 . Phys. Rev. Lett. 87, 057203 (2001).
  26. Sanders, G. D. et al. Electronic states and cyclotron resonance in n-type InMnAs. Phys. Rev. B 68, 165205 (2003).
  27. Friedman, J. R., Sarachik, M. P., Tejada, J. & Ziolo, R. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 38303833 (1996).
  28. Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145147 (1996).
  29. Kudelski, A. et al. Optically probing the fine structure of a single Mn atom in an InAs quantum dot. Phys. Rev. Lett. 99, 247209 (2007).
  30. Wurstbauer, U. et al. Anomalous magnetotransport and cyclotron resonance of high mobility magnetic 2DHG in the quantum Hall regime. Physica E 42, 10221025 (2010).
  31. Suemune, I. Band-edge hole mass in strained-quantum-well structures. Phys. Rev. B 43, 1409914106 (1991).
  32. Oettinger, K. et al. Dispersion relation, electron and hole effective masses in InxGa1−xAs single quantum wells. J. Appl. Phys. 79, 14811485 (1996).

Download references

Author information


  1. Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany

    • Ursula Wurstbauer,
    • Dieter Weiss &
    • Werner Wegscheider
  2. Institute of Applied Physics, University of Hamburg, D-20355 Hamburg, Germany

    • Ursula Wurstbauer
  3. Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, PL-02 668 Warszawa, Poland

    • Cezary Śliwa &
    • Tomasz Dietl
  4. Institute of Theoretical Physics, University of Warsaw, ul. Hoża 69, PL 00 681 Warszawa, Poland

    • Tomasz Dietl
  5. Present addresses: Department of Physics, Columbia University, New York, New York 10025, USA (U.W.); Solid State Physics Laboratory, ETH Zurich, Zurich 8093, Switzerland (W.W.)

    • Ursula Wurstbauer &
    • Werner Wegscheider


Project planning, W.W., D.W.; structure growth and processing, U.W., W.W.; experiments and data analysis, U.W., W.W., D.W.; theory, C.Ś., T.D.; writing, T.D., U.W., W.W., D.W., C.Ś.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (635k)

    Supplementary Information

Additional data