Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A finite-temperature phase transition for disordered weakly interacting bosons in one dimension

Abstract

It is commonly accepted that there are no phase transitions in one-dimensional systems at a finite temperature, because long-range correlations are destroyed by thermal fluctuations. Here we show theoretically that the one-dimensional gas of short-range interacting bosons in the presence of disorder can undergo a finite-temperature phase transition between two distinct states: fluid and insulator. Neither of these states has long-range spatial correlations, but this is a true, albeit non-conventional, phase transition, because transport properties are singular at the transition point. In the fluid phase, mass transport is possible, whereas in the insulator phase it is completely blocked even at finite temperatures. This study thus provides insight into how the interaction between disordered bosons influences their Anderson localization. This question, first raised for electrons in solids, is now crucial for the studies of atomic bosons, where recent experiments have demonstrated Anderson localization in expanding dilute quasi-one-dimensional clouds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of single-particle localization.
Figure 2: Scattering processes leading to the localization–delocalization transition.
Figure 3: Phase diagram for weakly interacting disordered bosons.
Figure 4: Manifestation of the many-body localization–delocalization transition in the expansion of a quasi-1D cloud.

Similar content being viewed by others

References

  1. van Hove, L. Sur l’integrale de configuration pour les systemes de particules a une dimension. Physica 16, 137–143 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  2. Landau, L. D. & Lifshits, E. M. Statistical Physics (Pergamon, 1958).

    Google Scholar 

  3. Gertsenshtein, M. E. & Vasil’ev, V. B. Waveguides with random inhomogeneities and Brownian motion in the Lobachevsky plane. Theor. Probab. Appl. 4, 391–398 (1959).

    Google Scholar 

  4. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrshnan, T. V. Scaling theory of localization—absence of quantum diffusion in 2 dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    Article  ADS  Google Scholar 

  5. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    ADS  Google Scholar 

  6. Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).

    Article  ADS  Google Scholar 

  7. Roati, G. et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895–898 (2008).

    Article  ADS  Google Scholar 

  8. Lifshitz, I. M. Energy spectrum structure and quantum states of disordered condensed systems. Sov. Phys. Usp. 7, 549–573 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  9. Halperin, B. I. & Lax, M. Impurity-band tails in high density limit I. Minimum counting method. Phys. Rev. 148, 722–740 (1966).

    Article  ADS  Google Scholar 

  10. Zittartz, J. & Langer, J. S. Theory of bound states in a random potential. Phys. Rev. 148, 741–747 (1966).

    Article  ADS  Google Scholar 

  11. Giamarchi, T. & Schulz, H. Anderson localization and interactions in one-dimensional metals. Phys. Rev. B 37, 325–340 (1988).

    Article  ADS  Google Scholar 

  12. Altman, E., Kafri, Y., Polkovnikov, A. & Refael, G. Insulating phases and superfluid–insulator transition of disordered boson chains. Phys. Rev. Lett 100, 170402 (2008).

    Article  ADS  Google Scholar 

  13. Falco, G. M., Nattermann, T. & Pokrovsky, V. L. Weakly interacting Bose gas in a random environment. Phys. Rev. B 80, 104515 (2009).

    Article  ADS  Google Scholar 

  14. Lugan, P. et al. Ultracold Bose gases in 1D disorder: From Lifshitz glass to Bose–Einstein condensate. Phys. Rev. Lett. 98, 170403 (2007).

    Article  ADS  Google Scholar 

  15. Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    Article  ADS  Google Scholar 

  16. Gornyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603 (2005).

    Article  ADS  Google Scholar 

  17. Mott, N. F. & Twose, W. D. The theory of impurity conduction. Adv. Phys. 10, 107–163 (1961).

    Article  ADS  Google Scholar 

  18. Mott, N. F. Conduction in non-crystalline systems: 4. Anderson localization in a disordered lattice. Phil. Mag. 22, 7–29 (1970).

    Article  ADS  Google Scholar 

  19. Mirlin, A. D. Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep. 326, 259–382 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  20. Aleiner, I. L., Brouwer, P. W. & Glazman, L. I. Quantum effects in Coulomb blockade. Phys. Rep. 358, 309–440 (2002).

    Article  ADS  Google Scholar 

  21. Altshuler, B. L., Gefen, Y., Kamenev, A. & Levitov, L. S. Quasiparticle lifetime in a finite system: A nonperturbative approach. Phys. Rev. Lett. 78, 2803–2806 (1997).

    Article  ADS  Google Scholar 

  22. Shklovskii, B. I. Superfluid–insulator transition in ‘dirty’ ultracold Fermi gas. Semiconductors 42, 909–913 (2008).

    Article  ADS  Google Scholar 

  23. Pollack, S. E. et al. Extreme tunability of interactions in a 7Li Bose–Einstein condensate. Phys. Rev. Lett. 102, 090402 (2009).

    Article  ADS  Google Scholar 

  24. Haler, E. et al. Realization of an excited strongly correlated quantum gas phase. Science 325, 1224–1227 (2009).

    Article  ADS  Google Scholar 

  25. Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Aspect and J. Dalibard for interesting discussions, and to M. Foster and L. Glazman for comments on the manuscript. We acknowledge support from US DOE Contract DE-AC02-06CH11357, from the IFRAF Institute of Ile de France and from ANR (Grant ANR-08-BLAN-0165). G.V.S. was also supported by the Dutch Foundation FOM. Part of the work was carried out during the workshop ‘From Femtoscience to Nanoscience: Nuclei, Quantum Dots, and Nanostructures’ in the Institute of Nuclear Theory at the University of Washington.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to I. L. Aleiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleiner, I., Altshuler, B. & Shlyapnikov, G. A finite-temperature phase transition for disordered weakly interacting bosons in one dimension. Nature Phys 6, 900–904 (2010). https://doi.org/10.1038/nphys1758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing