Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Far-field optical imaging and manipulation of individual spins with nanoscale resolution

Abstract

A fundamental limit to existing optical techniques for measurementand manipulation of spin degrees of freedom is set by diffraction, which does not allow spins separated by less than about a quarter of a micrometre to be resolved using conventional far-field optics. Here, we report an efficient far-field optical technique that overcomes the limiting role of diffraction, allowing individual electronic spins to be detected, imaged and manipulated coherently with nanoscale resolution. The technique involves selective flipping of the orientation of individual spins, associated with nitrogen-vacancy centres in room-temperature diamond, using a focused beam of light with intensity vanishing at a controllable location, which enables simultaneous single-spin imaging and magnetometry at the nanoscale with considerably less power than conventional techniques. Furthermore, by inhibiting spin transitions away from the laser intensity null, selective coherent rotation of individual spins is realized. This technique can be extended to subnanometre dimensions, thus enabling applications in diverse areas ranging from quantum information science to bioimaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of subdiffraction far-field optical imaging and manipulation of individual NV electronic spins in diamond (spin-RESOLFT).
Figure 2: Demonstration of subdiffraction optical spin imaging.
Figure 3: Subdiffraction optical magnetic sensing.
Figure 4: Subdiffraction coherent manipulation of spectrally indistinguishable NV spins using optically induced effects.

Similar content being viewed by others

References

  1. Jacques Vanier, C. A. The Quantum Physics of Atomic Frequency Standards (Hilger, 1989).

    Book  Google Scholar 

  2. Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  3. Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007).

    Article  ADS  Google Scholar 

  4. Xu, X. D. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    Article  ADS  Google Scholar 

  5. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  6. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  7. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    Article  ADS  Google Scholar 

  8. Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

    Article  ADS  Google Scholar 

  9. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  ADS  Google Scholar 

  10. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  ADS  Google Scholar 

  11. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  ADS  Google Scholar 

  12. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  13. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  ADS  Google Scholar 

  14. Westphal, V. & Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94, 143903 (2005).

    Article  ADS  Google Scholar 

  15. Zhuang, X. Nano-imaging with STORM. Nature Photon. 3, 365–367 (2009).

    Article  ADS  Google Scholar 

  16. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  17. Li, L. J., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009).

    Article  ADS  Google Scholar 

  18. Scott, T. F., Kowalski, B. A., Sullivan, A. C., Bowman, C. N. & McLeod, R. R. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913–917 (2009).

    Article  ADS  Google Scholar 

  19. Johnson, K. S. et al. Localization of metastable atom beams with optical standing waves: Nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998).

    Article  ADS  Google Scholar 

  20. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  21. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  ADS  Google Scholar 

  22. Hell, S. W & Kroug, M. Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995).

    Article  ADS  Google Scholar 

  23. Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon. 3, 144–147 (2009).

    ADS  Google Scholar 

  24. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    Article  ADS  Google Scholar 

  25. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    Article  ADS  Google Scholar 

  26. Wrachtrup, J. & Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter 18, S807–S824 (2006).

    Article  ADS  Google Scholar 

  27. Maze, J. R., Taylor, J. M. & Lukin, M. D. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys. Rev. B 78, 094303 (2008).

    Article  ADS  Google Scholar 

  28. Itano, W. M., Heinzen, D. J., Bollinger, J. J. & Wineland, D. J. Quantum zeno effect. Phys. Rev. A 41, 2295–2300 (1990).

    Article  ADS  Google Scholar 

  29. Gorshkov, A. V., Jiang, L., Greiner, M., Zoller, P. & Lukin, M. D. Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett. 100, 093005 (2008).

    Article  ADS  Google Scholar 

  30. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article  ADS  Google Scholar 

  31. Jiang, L. et al. Coherence of an optically illuminated single nuclear spin qubit. Phys. Rev. Lett. 100, 073001 (2008).

    Article  ADS  Google Scholar 

  32. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy centre in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge P. Cappellaro, Y. Chu, S. Folling, M. Greiner, P. Hemmer, E. Rittweger, B. Shields, E. Togan, A. Trifonov and D. Wildanger for valuable discussions and technical assistance. This work was supported by the NSF, DARPA, the Packard Foundation, the Smithsonian Institution and Harvard CNS.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding author

Correspondence to M. D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 537 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, P., Maze, J., Stanwix, P. et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Phys 6, 912–918 (2010). https://doi.org/10.1038/nphys1774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing