Physics challenged by cells

Journal name:
Nature Physics
Volume:
6,
Pages:
726–729
Year published:
DOI:
doi:10.1038/nphys1798

Cells are the building blocks of life. Ideas traditionally applied to physical problems are now helping to unravel their complex mysteries.

At a glance

Figures

  1. Minimal models for cellular structures.
    Figure 1: Minimal models for cellular structures.

    Left: Active networks composed of actin filaments (green) crosslinked passively (purple) and actively by motor bundles (brown). The motor bundles exert forces on filaments in the direction of the red arrows. The elastic properties of these networks are probed with a variety of rheological techniques. Right: Phospholipid vesicles interacting with a supported membrane. Both are decorated by functional molecules such as glycolipids (yellow), glycoproteins (purple) and adhesion proteins (red). If the adhesion proteins have counterparts in the opposing membrane, adhesion domains composed of numerous bonds form spontaneously. The contact zone between the two membranes can be observed by a variety of techniques involving inverted microscopy. Middle: The combination of both active networks and vesicles with the addition of coupling proteins, and active control of the whole, will lead to a more realistic model for the mechanoresponse and the first artificial cells.

  2. Specific adhesion of vesicles.
    Figure 2: Specific adhesion of vesicles.

    a, Reconstruction of the vesicle membrane height profile, h(x, y), on adhesion, by formation of neutravidin–avidin bonds, imaged using reflection interference contrast microscopy. b, Corresponding distribution of fluorescently labelled neutravidin in the substrate membrane. Despite the initial uniform distribution of mobile binders in both the vesicle and the substrate membrane, a ring-like adhesion domain is established as a result of two coupled aggregation processes. Figure reproduced with permission from ref. 25,© 2010 EPL.

  3. Ring- and network-like actin assembly within a phospholipid vesicle.
    Figure 3: Ring- and network-like actin assembly within a phospholipid vesicle26.

    Actin is crosslinked with α-actinin and labelled with rhodamine phalloidin. Figure courtesy of L. Limozin.

References

  1. Timofeeff-Ressovsky, N. W., Zimmer, K. G. & Delbrück, M. Nachr. Ges. Wiss. Gött. 1, 189245 (1935).
  2. Schrödinger, E. What is Life? (Cambridge Univ. Press, 1944).
  3. Bustamante, C., Liphardt, J. & Ritort, F. Phys. Today 58, 4348 (2005).
  4. Jarzynski, C. Phys. Rev. Lett. 78, 26902693 (1997).
  5. Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. Jr & Bustamante, C. Science 296, 18321835 (2002).
  6. Collin, D. et al. Nature 437, 231234 (2005).
  7. Crooks, G. E. Phys. Rev. E 60, 27212726 (1999).
  8. Prost, J., Joanny, J-F. & Parrondo, J. M. R. Phys. Rev. Lett. 103, 090601 (2009).
  9. Seifert, U. Phys. Rev. Lett. 104, 138101 (2010).
  10. Hayashi, K., Ueno, H., Iino, R. & Noji, H. Phys. Rev. Lett. 104, 218103 (2010).
  11. Pelham, R. J. & Wang, Y-L. Proc. Natl Acad. Sci. USA 94, 1366113665 (1997).
  12. Balaban, N. Q. et al. Nature Cell Biol. 3, 466472 (2001).
  13. Engler, A., Sen, S., Sweeney, H. L. & Discher, D. E. Cell 126, 677689 (2006).
  14. Zemel, A. et al. Nature Phys. 6, 468473 (2010).
  15. Basan, M. et al. HFSP J. 3, 265272 (2009).
  16. Liu, A. P. & Fletcher, D. Nature Rev. Mol. Cell Biol. 10, 644650 (2009).
  17. Gittes, F. et al. Phys. Rev. Lett. 79, 32863289 (1997).
  18. MacKintosh, F. C. & Schmidt, C. F. Curr. Opin. Cell Biol. 22, 2935 (2010).
  19. MacKintosh, F. C. & Levin, A. J. Phys. Rev. Lett. 100, 018104 (2008).
  20. Humphrey, D. et al. Nature 416, 413416 (2002).
  21. Reister, E. et al. Phys. Rev. Lett. 101, 208103 (2008).
  22. Smith, A-S. & Sackmann, E. ChemPhysChem 10, 6678 (2009).
  23. Weik, T. R. & Lipowsky, R. Phys. Rev. E 64, 011903 (2001).
  24. Smith, A-S. et al. Proc. Natl Acad. Sci. USA 105, 69066911 (2008).
  25. Smith, A-S., Fenz, S. F. & Sengupta, K. Europhys. Lett. 89, 28003 (2010).
  26. Limozin, L. & Sackmann, E. Phys. Rev. Lett. 89, 168103 (2002).
  27. Pontani, L-L. et al. Biophys. J. 96, 192198 (2009).

Download references

Author information

Affiliations

  1. Ana-Sunčana Smith is at the Institut für Theoretische Physik and Excellence Cluster: Engineering of Advanced Materials, Universität Erlangen-Nünberg, Nägelsbachstrasse 49b, 90152 Erlangen, Germany.
    smith@physik.uni-erlangen.de

Author details

Additional data